Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27596
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRichardson, Jessicaen_UK
dc.contributor.authorMiller, Claireen_UK
dc.contributor.authorMaberly, Stephen Cen_UK
dc.contributor.authorTaylor, Philipen_UK
dc.contributor.authorGlobevnik, Lidijaen_UK
dc.contributor.authorHunter, Peteren_UK
dc.contributor.authorJeppesen, Eriken_UK
dc.contributor.authorMischke, Uteen_UK
dc.contributor.authorMoe, S Jannickeen_UK
dc.contributor.authorPasztaleniec, Agnieszkaen_UK
dc.contributor.authorSøndergaard, Martinen_UK
dc.contributor.authorCarvalho, Laurenceen_UK
dc.date.accessioned2018-08-03T00:03:01Z-
dc.date.available2018-08-03T00:03:01Z-
dc.date.issued2018-11-30en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27596-
dc.description.abstractBlooms of cyanobacteria are a current threat to global water security that is expected to increase in the future because of increasing nutrient enrichment, increasing temperature and extreme precipitation in combination with prolonged drought. However, the responses to multiple stressors, such as those above, are often complex and there is contradictory evidence as to how they may interact. Here we used broad scale data from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature and water retention time in different types of lakes. Eight lake types were examined based on factorial combinations of major factors that determine phytoplankton composition and sensitivity to nutrients: alkalinity (low and medium‐high), colour (clear and humic) and mixing intensity (polymictic and stratified). In line with expectations, cyanobacteria increased with temperature and retention time in five of the eight lake types. Temperature effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently not at risk could be affected by warming in the future. However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied among lake types highlighting the complex responses of lakes to multiple stressors. For example, in polymictic, medium‐high alkalinity, humic lakes cyanobacteria biovolume was positively explained by retention time and a synergy between TP and temperature while in polymictic, medium‐high alkalinity, clear lakes only retention time was identified as an explanatory variable. These results show that, although climate change will need to be accounted for when managing the risk of cyanobacteria in lakes, a ‘one‐size fits‐all’ approach is not appropriate. When forecasting the response of cyanobacteria to future environmental change, including changes caused by climate and local management, it will be important to take this differential sensitivity of lakes into account.en_UK
dc.language.isoenen_UK
dc.publisherWileyen_UK
dc.relationRichardson J, Miller C, Maberly SC, Taylor P, Globevnik L, Hunter P, Jeppesen E, Mischke U, Moe SJ, Pasztaleniec A, Søndergaard M & Carvalho L (2018) Effects of multiple stressors on cyanobacteria abundance vary with lake type. Global Change Biology, 24 (11), pp. 5044-5055. https://doi.org/10.1111/gcb.14396en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is the peer reviewed version of the following article: Richardson J, Miller C, Maberly SC, et al. Effects of multiple stressors on cyanobacteria abundance vary with lake type. Glob Change Biol. 2018;24:5044–5055, which has been published in final form at https://doi.org/10.1111/gcb.14396. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.en_UK
dc.subjectGlobal changeen_UK
dc.subjectclimate warmingen_UK
dc.subjectcyanobacteriaen_UK
dc.subjectnutrientsen_UK
dc.subjecteutrophicationen_UK
dc.subjecttemperatureen_UK
dc.subjectretention timeen_UK
dc.subjectlake typeen_UK
dc.titleEffects of multiple stressors on cyanobacteria abundance vary with lake typeen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2019-07-14en_UK
dc.rights.embargoreason[Richardson_et_al-2018-Global_Change_Biology.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1111/gcb.14396en_UK
dc.identifier.pmid30005138en_UK
dc.citation.jtitleGlobal Change Biologyen_UK
dc.citation.issn1365-2486en_UK
dc.citation.issn1354-1013en_UK
dc.citation.volume24en_UK
dc.citation.issue11en_UK
dc.citation.spage5044en_UK
dc.citation.epage5055en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailp.d.hunter@stir.ac.uken_UK
dc.citation.date13/07/2018en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationCEH Edinburghen_UK
dc.contributor.affiliationUniversity of Ljubljanaen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationAarhus Universityen_UK
dc.contributor.affiliationLeibniz-Institute of Freshwater Ecology and Inland Fisheries, Germanyen_UK
dc.contributor.affiliationNorwegian Institute for Water Researchen_UK
dc.contributor.affiliationInstitute of Environmental Protection-National Research Instituteen_UK
dc.contributor.affiliationAarhus Universityen_UK
dc.contributor.affiliationCEH Edinburghen_UK
dc.identifier.isiWOS:000447760300005en_UK
dc.identifier.scopusid2-s2.0-85052389107en_UK
dc.identifier.wtid963617en_UK
dc.contributor.orcid0000-0001-7269-795Xen_UK
dc.date.accepted2018-07-13en_UK
dcterms.dateAccepted2018-07-13en_UK
dc.date.filedepositdate2018-08-02en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorRichardson, Jessica|en_UK
local.rioxx.authorMiller, Claire|en_UK
local.rioxx.authorMaberly, Stephen C|en_UK
local.rioxx.authorTaylor, Philip|en_UK
local.rioxx.authorGlobevnik, Lidija|en_UK
local.rioxx.authorHunter, Peter|0000-0001-7269-795Xen_UK
local.rioxx.authorJeppesen, Erik|en_UK
local.rioxx.authorMischke, Ute|en_UK
local.rioxx.authorMoe, S Jannicke|en_UK
local.rioxx.authorPasztaleniec, Agnieszka|en_UK
local.rioxx.authorSøndergaard, Martin|en_UK
local.rioxx.authorCarvalho, Laurence|en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2019-07-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-07-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-07-14|en_UK
local.rioxx.filenameRichardson_et_al-2018-Global_Change_Biology.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1354-1013en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Richardson_et_al-2018-Global_Change_Biology.pdfFulltext - Accepted Version986.24 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.