Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaisa, Nathanael Len_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.contributor.authorWallace, Andrewen_UK
dc.date.accessioned2018-08-01T00:03:27Z-
dc.date.available2018-08-01T00:03:27Z-
dc.date.issued2018-08-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27576-
dc.description.abstractTracking a target of interest in both sparse and crowded environments is a challenging problem, not yet successfully addressed in the literature. In this paper, we propose a new long-term visual tracking algorithm, learning discriminative correlation filters and using an online classifier, to track a target of interest in both sparse and crowded video sequences. First, we learn a translation correlation filter using a multi-layer hybrid of convolutional neural networks (CNN) and traditional hand-crafted features. Second, we include a re-detection module for overcoming tracking failures due to long-term occlusions using online SVM and Gaussian mixture probability hypothesis density (GM-PHD) filter. Finally, we learn a scale correlation filter for estimating the scale of a target by constructing a target pyramid around the estimated or re-detected position using the HOG features. We carry out extensive experiments on both sparse and dense data sets which show that our method significantly outperforms state-of-the-art methods.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationBaisa NL, Bhowmik D & Wallace A (2018) Long-term correlation tracking using multi-layer hybrid features in sparse and dense environments. Journal of Visual Communication and Image Representation, 55, pp. 464-476. https://doi.org/10.1016/j.jvcir.2018.06.027en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Baisa NL, Bhowmik D & Wallace A (2018) Long-term correlation tracking using multi-layer hybrid features in sparse and dense environments, Journal of Visual Communication and Image Representation, 55, pp. 464-476. DOI: https://doi.org/10.1016/j.jvcir.2018.06.027. © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectMedia Technologyen_UK
dc.subjectSignal Processingen_UK
dc.subjectElectrical and Electronic Engineeringen_UK
dc.subjectComputer Vision and Pattern Recognitionen_UK
dc.titleLong-term correlation tracking using multi-layer hybrid features in sparse and dense environmentsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2019-07-08en_UK
dc.rights.embargoreason[LCMHT-JVCI.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.jvcir.2018.06.027en_UK
dc.citation.jtitleJournal of Visual Communication and Image Representationen_UK
dc.citation.issn1047-3203en_UK
dc.citation.volume55en_UK
dc.citation.spage464en_UK
dc.citation.epage476en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emaildeepayan.bhowmik@stir.ac.uken_UK
dc.citation.date07/07/2018en_UK
dc.contributor.affiliationHeriot-Watt Universityen_UK
dc.contributor.affiliationSheffield Hallam Universityen_UK
dc.contributor.affiliationHeriot-Watt Universityen_UK
dc.identifier.isiWOS:000445318100041en_UK
dc.identifier.scopusid2-s2.0-85049606804en_UK
dc.identifier.wtid957902en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.date.accepted2018-06-30en_UK
dcterms.dateAccepted2018-06-30en_UK
dc.date.filedepositdate2018-07-31en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBaisa, Nathanael L|en_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.authorWallace, Andrew|en_UK
local.rioxx.projectProject ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2019-07-08en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-07-07en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2019-07-08|en_UK
local.rioxx.filenameLCMHT-JVCI.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1047-3203en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
LCMHT-JVCI.pdfFulltext - Accepted Version5.19 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.