Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/27576
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baisa, Nathanael L | en_UK |
dc.contributor.author | Bhowmik, Deepayan | en_UK |
dc.contributor.author | Wallace, Andrew | en_UK |
dc.date.accessioned | 2018-08-01T00:03:27Z | - |
dc.date.available | 2018-08-01T00:03:27Z | - |
dc.date.issued | 2018-08-31 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/27576 | - |
dc.description.abstract | Tracking a target of interest in both sparse and crowded environments is a challenging problem, not yet successfully addressed in the literature. In this paper, we propose a new long-term visual tracking algorithm, learning discriminative correlation filters and using an online classifier, to track a target of interest in both sparse and crowded video sequences. First, we learn a translation correlation filter using a multi-layer hybrid of convolutional neural networks (CNN) and traditional hand-crafted features. Second, we include a re-detection module for overcoming tracking failures due to long-term occlusions using online SVM and Gaussian mixture probability hypothesis density (GM-PHD) filter. Finally, we learn a scale correlation filter for estimating the scale of a target by constructing a target pyramid around the estimated or re-detected position using the HOG features. We carry out extensive experiments on both sparse and dense data sets which show that our method significantly outperforms state-of-the-art methods. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier BV | en_UK |
dc.relation | Baisa NL, Bhowmik D & Wallace A (2018) Long-term correlation tracking using multi-layer hybrid features in sparse and dense environments. Journal of Visual Communication and Image Representation, 55, pp. 464-476. https://doi.org/10.1016/j.jvcir.2018.06.027 | en_UK |
dc.rights | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Baisa NL, Bhowmik D & Wallace A (2018) Long-term correlation tracking using multi-layer hybrid features in sparse and dense environments, Journal of Visual Communication and Image Representation, 55, pp. 464-476. DOI: https://doi.org/10.1016/j.jvcir.2018.06.027. © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_UK |
dc.subject | Media Technology | en_UK |
dc.subject | Signal Processing | en_UK |
dc.subject | Electrical and Electronic Engineering | en_UK |
dc.subject | Computer Vision and Pattern Recognition | en_UK |
dc.title | Long-term correlation tracking using multi-layer hybrid features in sparse and dense environments | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2019-07-08 | en_UK |
dc.rights.embargoreason | [LCMHT-JVCI.pdf] Publisher requires embargo of 12 months after formal publication. | en_UK |
dc.identifier.doi | 10.1016/j.jvcir.2018.06.027 | en_UK |
dc.citation.jtitle | Journal of Visual Communication and Image Representation | en_UK |
dc.citation.issn | 1047-3203 | en_UK |
dc.citation.volume | 55 | en_UK |
dc.citation.spage | 464 | en_UK |
dc.citation.epage | 476 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.author.email | deepayan.bhowmik@stir.ac.uk | en_UK |
dc.citation.date | 07/07/2018 | en_UK |
dc.contributor.affiliation | Heriot-Watt University | en_UK |
dc.contributor.affiliation | Sheffield Hallam University | en_UK |
dc.contributor.affiliation | Heriot-Watt University | en_UK |
dc.identifier.isi | WOS:000445318100041 | en_UK |
dc.identifier.scopusid | 2-s2.0-85049606804 | en_UK |
dc.identifier.wtid | 957902 | en_UK |
dc.contributor.orcid | 0000-0003-1762-1578 | en_UK |
dc.date.accepted | 2018-06-30 | en_UK |
dcterms.dateAccepted | 2018-06-30 | en_UK |
dc.date.filedepositdate | 2018-07-31 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Baisa, Nathanael L| | en_UK |
local.rioxx.author | Bhowmik, Deepayan|0000-0003-1762-1578 | en_UK |
local.rioxx.author | Wallace, Andrew| | en_UK |
local.rioxx.project | Project ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.freetoreaddate | 2019-07-08 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-07-07 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by-nc-nd/4.0/|2019-07-08| | en_UK |
local.rioxx.filename | LCMHT-JVCI.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1047-3203 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
LCMHT-JVCI.pdf | Fulltext - Accepted Version | 5.19 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.