Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/27485
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Veerapen, Nadarajen | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.date.accessioned | 2018-07-14T00:01:38Z | - |
dc.date.available | 2018-07-14T00:01:38Z | - |
dc.date.issued | 2018-09-30 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/27485 | - |
dc.description.abstract | The search landscape is a common metaphor to describe the structure of computational search spaces. Different landscape metrics can be computed and used to predict search difficulty. Yet, the metaphor falls short in visualisation terms because it is hard to represent complex landscapes, both in terms of size and dimensionality. This paper combines Local Optima Networks, as a compact representation of the global structure of a search space, and dimensionality reduction, using the t-Distributed Stochastic Neighbour Embedding (t-SNE) algorithm, in order to both bring the metaphor to life and convey new insight into the search process. As a case study, two benchmark programs, under a Genetic Improvement bug-fixing scenario, are analysed and visualised using the proposed method. Local Optima Networks for both iterated local search and a hybrid genetic algorithm, across different neighbourhoods, are compared, highlighting the differences in how the landscape is explored. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | BMC | en_UK |
dc.relation | Veerapen N & Ochoa G (2018) Visualising the Global Structure of Search Landscapes: Genetic Improvement as a Case Study. Genetic Programming and Evolvable Machines, 19 (3, Special Issue: SI), pp. 317-349. https://doi.org/10.1007/s10710-018-9328-1 | en_UK |
dc.relation.uri | http://hdl.handle.net/11667/120 | en_UK |
dc.rights | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | fitness landscape | en_UK |
dc.subject | genetic improvement | en_UK |
dc.subject | local optima network | en_UK |
dc.subject | visualisation | en_UK |
dc.title | Visualising the Global Structure of Search Landscapes: Genetic Improvement as a Case Study | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1007/s10710-018-9328-1 | en_UK |
dc.citation.jtitle | Genetic Programming and Evolvable Machines | en_UK |
dc.citation.issn | 1573-7632 | en_UK |
dc.citation.issn | 1389-2576 | en_UK |
dc.citation.volume | 19 | en_UK |
dc.citation.issue | 3, Special Issue: SI | en_UK |
dc.citation.spage | 317 | en_UK |
dc.citation.epage | 349 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.contributor.funder | The Leverhulme Trust | en_UK |
dc.citation.date | 06/08/2018 | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.isi | WOS:000441941500002 | en_UK |
dc.identifier.scopusid | 2-s2.0-85051733883 | en_UK |
dc.identifier.wtid | 940418 | en_UK |
dc.contributor.orcid | 0000-0003-3699-1080 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dc.date.accepted | 2018-07-11 | en_UK |
dcterms.dateAccepted | 2018-07-11 | en_UK |
dc.date.filedepositdate | 2018-07-12 | en_UK |
dc.relation.funderproject | DAASE: Dynamic Adaptive Automated Software Engineering | en_UK |
dc.relation.funderproject | The Cartography of Computational Search Spaces | en_UK |
dc.relation.funderref | EP/J017515/1 | en_UK |
dc.relation.funderref | RPG-2015-395 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Veerapen, Nadarajen|0000-0003-3699-1080 | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.project | EP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.project | RPG-2015-395|The Leverhulme Trust| | en_UK |
local.rioxx.freetoreaddate | 2018-08-06 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2018-08-06 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2018-08-06| | en_UK |
local.rioxx.filename | Visualising the global structure of search landscapes.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1573-7632 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Visualising the global structure of search landscapes.pdf | Fulltext - Published Version | 9.18 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.