Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27482
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Yuanyuanen_UK
dc.contributor.authorHarman, Marken_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorRuhe, Guentheren_UK
dc.contributor.authorBrinkkemper, Sjaaken_UK
dc.date.accessioned2018-07-14T00:00:57Z-
dc.date.available2018-07-14T00:00:57Z-
dc.date.issued2018-06-05en_UK
dc.identifier.other3en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27482-
dc.description.abstractA variety of meta-heuristic search algorithms have been introduced for optimising software release planning. However, there has been no comprehensive empirical study of different search algorithms across multiple different real-world datasets. In this article, we present an empirical study of global, local, and hybrid meta- and hyper-heuristic search-based algorithms on 10 real-world datasets. We find that the hyper-heuristics are particularly effective. For example, the hyper-heuristic genetic algorithm significantly outperformed the other six approaches (and with high effect size) for solution quality 85% of the time, and was also faster than all others 70% of the time. Furthermore, correlation analysis reveals that it scales well as the number of requirements increases.en_UK
dc.language.isoenen_UK
dc.publisherAssociation for Computing Machinery (ACM)en_UK
dc.relationZhang Y, Harman M, Ochoa G, Ruhe G & Brinkkemper S (2018) An Empirical Study of Meta- and Hyper-Heuristic Search for Multi-Objective Release Planning. ACM Transactions on Software Engineering and Methodology, 27 (1), Art. No.: 3. https://doi.org/10.1145/3196831en_UK
dc.rights© ACM, 2018. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Software Engineering and Methodology, Volume 27, 1 (2018) http://doi.acm.org/10.1145/3196831en_UK
dc.subjectSoftware engineeringen_UK
dc.subjectalgorithmsen_UK
dc.subjectexperimentationen_UK
dc.subjectmeasurementen_UK
dc.subjectstrategic release planningen_UK
dc.subjectmeta-heuristicsen_UK
dc.subjecthyper-heuristicsen_UK
dc.titleAn Empirical Study of Meta- and Hyper-Heuristic Search for Multi-Objective Release Planningen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1145/3196831en_UK
dc.citation.jtitleACM Transactions on Software Engineering and Methodologyen_UK
dc.citation.issn1557-7392en_UK
dc.citation.issn1049-331Xen_UK
dc.citation.volume27en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Calgaryen_UK
dc.contributor.affiliationUtrecht Universityen_UK
dc.identifier.isiWOS:000434679800004en_UK
dc.identifier.wtid940249en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2018-05-22en_UK
dcterms.dateAccepted2018-05-22en_UK
dc.date.filedepositdate2018-07-04en_UK
dc.relation.funderprojectDAASE: Dynamic Adaptive Automated Software Engineeringen_UK
dc.relation.funderrefEP/J017515/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorZhang, Yuanyuan|en_UK
local.rioxx.authorHarman, Mark|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorRuhe, Guenther|en_UK
local.rioxx.authorBrinkkemper, Sjaak|en_UK
local.rioxx.projectEP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2018-07-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-07-13|en_UK
local.rioxx.filenametosem_2018article.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1049-331Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
tosem_2018article.pdfFulltext - Accepted Version897.14 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.