Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Feien_UK
dc.contributor.authorHuang, Tengen_UK
dc.contributor.authorWang, Junen_UK
dc.contributor.authorSun, Jingpingen_UK
dc.contributor.authorYang, Erfuen_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2018-06-20T00:00:57Z-
dc.date.available2018-06-20T00:00:57Z-
dc.date.issued2018-02-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27409-
dc.description.abstractTo address the challenging problem on target recognition from synthetic aperture radar (SAR) images, a novel method is proposed by combining Deep Convolutional Neural Network (DCNN) and Support Vector Machine (SVM). First, an improved DCNN is employed to learn the features of SAR images. Then, a SVM is utilized to map the leant features into the output labels. To enhance the feature extraction capability of DCNN, a class of separation information is also added to the cross-entropy cost function as a regularization term. As a result, this explicitly facilitates the intra-class compactness and separability in the process of feature learning. Numerical experiments are performed on the Moving and Stationary Target Acquisition and Recognition (MSTAR) database. The results demonstrate that the proposed method can achieve an average accuracy of 99.15% on ten types of targets.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronic Engineersen_UK
dc.relationGao F, Huang T, Wang J, Sun J, Yang E & Hussain A (2018) Combining deep convolutional neural network and SVM to SAR image target recognition. In: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), volume 2018-January. The 3rd International Conference on Smart Data (SmartData-2017), 21.06.2017-23.06.2017. Exeter, UK: Institute of Electrical and Electronic Engineers, pp. 1082-1085. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.165en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectSupport vector machinesen_UK
dc.subjectCost functionen_UK
dc.subjectTarget recognitionen_UK
dc.subjectSynthetic aperture radaren_UK
dc.subjectTrainingen_UK
dc.subjectDatabasesen_UK
dc.subjectFeature extractionen_UK
dc.titleCombining deep convolutional neural network and SVM to SAR image target recognitionen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[08276887.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/iThings-GreenCom-CPSCom-SmartData.2017.165en_UK
dc.citation.volume2018-Januaryen_UK
dc.citation.spage1082en_UK
dc.citation.epage1085en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.btitle2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)en_UK
dc.citation.conferencedates2017-06-21 - 2017-06-23en_UK
dc.citation.conferencenameThe 3rd International Conference on Smart Data (SmartData-2017)en_UK
dc.citation.date01/02/2018en_UK
dc.citation.isbn978-1-5386-3067-9en_UK
dc.publisher.addressExeter, UKen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85047438600en_UK
dc.identifier.wtid926769en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2017-04-22en_UK
dcterms.dateAccepted2017-04-22en_UK
dc.date.filedepositdate2018-06-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGao, Fei|en_UK
local.rioxx.authorHuang, Teng|en_UK
local.rioxx.authorWang, Jun|en_UK
local.rioxx.authorSun, Jingping|en_UK
local.rioxx.authorYang, Erfu|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2268-01-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename08276887.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-5386-3067-9en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
08276887.pdfFulltext - Published Version317.2 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.