Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/27409
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gao, Fei | en_UK |
dc.contributor.author | Huang, Teng | en_UK |
dc.contributor.author | Wang, Jun | en_UK |
dc.contributor.author | Sun, Jingping | en_UK |
dc.contributor.author | Yang, Erfu | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.date.accessioned | 2018-06-20T00:00:57Z | - |
dc.date.available | 2018-06-20T00:00:57Z | - |
dc.date.issued | 2018-02-01 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/27409 | - |
dc.description.abstract | To address the challenging problem on target recognition from synthetic aperture radar (SAR) images, a novel method is proposed by combining Deep Convolutional Neural Network (DCNN) and Support Vector Machine (SVM). First, an improved DCNN is employed to learn the features of SAR images. Then, a SVM is utilized to map the leant features into the output labels. To enhance the feature extraction capability of DCNN, a class of separation information is also added to the cross-entropy cost function as a regularization term. As a result, this explicitly facilitates the intra-class compactness and separability in the process of feature learning. Numerical experiments are performed on the Moving and Stationary Target Acquisition and Recognition (MSTAR) database. The results demonstrate that the proposed method can achieve an average accuracy of 99.15% on ten types of targets. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Institute of Electrical and Electronic Engineers | en_UK |
dc.relation | Gao F, Huang T, Wang J, Sun J, Yang E & Hussain A (2018) Combining deep convolutional neural network and SVM to SAR image target recognition. In: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), volume 2018-January. The 3rd International Conference on Smart Data (SmartData-2017), 21.06.2017-23.06.2017. Exeter, UK: Institute of Electrical and Electronic Engineers, pp. 1082-1085. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.165 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Support vector machines | en_UK |
dc.subject | Cost function | en_UK |
dc.subject | Target recognition | en_UK |
dc.subject | Synthetic aperture radar | en_UK |
dc.subject | Training | en_UK |
dc.subject | Databases | en_UK |
dc.subject | Feature extraction | en_UK |
dc.title | Combining deep convolutional neural network and SVM to SAR image target recognition | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [08276887.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.165 | en_UK |
dc.citation.volume | 2018-January | en_UK |
dc.citation.spage | 1082 | en_UK |
dc.citation.epage | 1085 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.citation.btitle | 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) | en_UK |
dc.citation.conferencedates | 2017-06-21 - 2017-06-23 | en_UK |
dc.citation.conferencename | The 3rd International Conference on Smart Data (SmartData-2017) | en_UK |
dc.citation.date | 01/02/2018 | en_UK |
dc.citation.isbn | 978-1-5386-3067-9 | en_UK |
dc.publisher.address | Exeter, UK | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | University of Strathclyde | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.scopusid | 2-s2.0-85047438600 | en_UK |
dc.identifier.wtid | 926769 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dc.date.accepted | 2017-04-22 | en_UK |
dcterms.dateAccepted | 2017-04-22 | en_UK |
dc.date.filedepositdate | 2018-06-19 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Gao, Fei| | en_UK |
local.rioxx.author | Huang, Teng| | en_UK |
local.rioxx.author | Wang, Jun| | en_UK |
local.rioxx.author | Sun, Jingping| | en_UK |
local.rioxx.author | Yang, Erfu| | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2268-01-02 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | 08276887.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-1-5386-3067-9 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
08276887.pdf | Fulltext - Published Version | 317.2 kB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.