Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27367
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Impact of deoxynivalenol on rainbow trout: Growth performance, digestibility, key gene expression regulation and metabolism
Author(s): Goncalves, Rui A
Navarro-Guillen, Carmen
Gilannejad, Neda
Dias, Jorge
Schatzmayr, Dian
Bichl, Gerlinde
Czabany, Tibor
Moyano, Francisco J
Rema, Paulo
Yufera, Manuel
MacKenzie, Simon
Martinez-Rodriguez, Gonzalo
Contact Email: simon.mackenzie@stir.ac.uk
Keywords: Fusarium mycotoxins
Oncorhynchus mykiss
PACAPl DON-3-sulfate
Biomarker
Issue Date: 31-Mar-2018
Citation: Goncalves RA, Navarro-Guillen C, Gilannejad N, Dias J, Schatzmayr D, Bichl G, Czabany T, Moyano FJ, Rema P, Yufera M, MacKenzie S & Martinez-Rodriguez G (2018) Impact of deoxynivalenol on rainbow trout: Growth performance, digestibility, key gene expression regulation and metabolism, Aquaculture, 490, pp. 362-372. https://doi.org/10.1016/j.aquaculture.2018.03.001.
Abstract: The impact of deoxynivalenol (DON) on rainbow trout, Oncorhynchus mykiss, is mainly characterised by impaired growth performance and reduced feed intake, usually with the total absence of any visible clinical signs. Despite the high concentrations of DON in the present study (up to 11,412 ± 1141 μg kg−1), no clinical signs (except anorexia at the higher DON dosage) were observed, which confirms the difficulties of diagnosing DON ingestion. Compared to the control group, the proteolytic enzyme activities (pepsin, trypsin and chymotrypsin) in trout were altered by DON ingestion. However, it was not clear if the observed impact on digestive enzymes was due to the direct action of DON, or a consequence of the lower feed intake determined for DON-treated animals. The impact of DON on the abundance of specific measured mRNA transcripts was unexpected with higher expression levels for insulin-like growth factors, igf1 and igf2, which are directly related to elevated insulin levels in plasma. This can also in part be influenced by the trypsin activity and by npy, given its higher mRNA expression levels. The apparent digestibility of dry matter, protein and energy was not affected by dietary levels of DON, however, nutrient retention, protein, fat and energy retention were significantly affected in animals fed DON. Adenylate cyclase-activating polypeptide (PACAP) expression seems to play an important role in controlling feed intake in DON fed trout. In the present study, we have shown for the first time that DON is metabolized to DON-3-sulfate in trout. DON-3-sulfate is much less toxic than DON, which helps to explain the lack of clinical signs in fish fed DON. Being a novel metabolite identified in trout makes it a potential biomarker of DON exposure. Suppression of appetite due to DON contamination in feeds might be a defense mechanism in order to decrease the exposure of the animal to DON, therefore reducing the potential negative impacts of DON.
DOI Link: 10.1016/j.aquaculture.2018.03.001
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Goncalves RA, Navarro-Guillen C, Gilannejad N, Dias J, Schatzmayr D, Bichl G, Czabany T, Moyano FJ, Rema P, Yufera M, MacKenzie S & Martinez-Rodriguez G (2018) Impact of deoxynivalenol on rainbow trout: Growth performance, digestibility, key gene expression regulation and metabolism, Aquaculture, 490, pp. 362-372. DOI: https://doi.org/10.1016/j.aquaculture.2018.03.001 © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
Goncalvesetal.pdfFulltext - Accepted Version486.4 kBAdobe PDFUnder Embargo until 2019-03-03    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.