Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27363
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories
Author(s): Simon, Justin I
Cuzzi, Jeffrey N
McCain, Kaitlyn A
Cato, Michael J
Christoffersen, Peter A
Fisher, Kent R
Srinivasan, Poorna
Tait, Alastair W
Olson, Daniel M
Scargle, Jeffrey D
Keywords: chondritic meteorites
chondrules
CAIs
planetesimals
protoplanetary disks
asteroids
Issue Date: 15-Jul-2018
Citation: Simon JI, Cuzzi JN, McCain KA, Cato MJ, Christoffersen PA, Fisher KR, Srinivasan P, Tait AW, Olson DM & Scargle JD (2018) Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories, Earth and Planetary Science Letters, 494, pp. 69-82. https://doi.org/10.1016/j.epsl.2018.04.021.
Abstract: Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016, Friedrich et al., 2015, Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite “chondrule” size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary ‘dust’ rims on only a subset (∼15–20%) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct “lithologies” in NWA 5717 are nebular aggregates of chondrules. If ≥cm-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.
DOI Link: 10.1016/j.epsl.2018.04.021
Rights: Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Files in This Item:
File Description SizeFormat 
1-s2.0-S0012821X18302243-main.pdfFulltext - Published Version5.04 MBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.