Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27139
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrado, Fernanda Dotti doen_UK
dc.contributor.authorVera, Manuelen_UK
dc.contributor.authorHermida, Miguelen_UK
dc.contributor.authorBouza, Carmenen_UK
dc.contributor.authorPardo, Belen Gen_UK
dc.contributor.authorVilas, Romanen_UK
dc.contributor.authorBlanco, Andresen_UK
dc.contributor.authorFernandez, Carlosen_UK
dc.contributor.authorMaroso, Francescoen_UK
dc.contributor.authorMaes, Gregory Een_UK
dc.contributor.authorTuran, Cemalen_UK
dc.contributor.authorVolckaert, Filip A M Jen_UK
dc.contributor.authorTaggart, Johnen_UK
dc.contributor.authorCarr, Adrianen_UK
dc.contributor.authorOgden, Roben_UK
dc.date.accessioned2018-05-13T00:32:42Z-
dc.date.available2018-05-13T00:32:42Z-
dc.date.issued2018-09-30en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27139-
dc.description.abstractUnraveling adaptive genetic variation represents, in addition to the estimate of population demographic parameters, a cornerstone for the management of aquatic natural living resources, which, in turn, represent the raw material for breeding programs. The turbot (Scophthalmus maximus) is a marine flatfish of high commercial value living on the European continental shelf. While wild populations are declining, aquaculture is flourishing in southern Europe. We evaluated the genetic structure of turbot throughout its natural distribution range (672 individuals; 20 populations) by analyzing allele frequency data from 755 single nucleotide polymorphism discovered and genotyped by double‐digest RAD sequencing. The species was structured into four main regions: Baltic Sea, Atlantic Ocean, Adriatic Sea, and Black Sea, with subtle differentiation apparent at the distribution margins of the Atlantic region. Genetic diversity and effective population size estimates were highest in the Atlantic populations, the area of greatest occurrence, while turbot from other regions showed lower levels, reflecting geographical isolation and reduced abundance. Divergent selection was detected within and between the Atlantic Ocean and Baltic Sea regions, and also when comparing these two regions with the Black Sea. Evidence of parallel evolution was detected between the two low salinity regions, the Baltic and Black seas. Correlation between genetic and environmental variation indicated that temperature and salinity were probably the main environmental drivers of selection. Mining around the four genomic regions consistently inferred to be under selection identified candidate genes related to osmoregulation, growth, and resistance to diseases. The new insights are useful for the management of turbot fisheries and aquaculture by providing the baseline for evaluating the consequences of turbot releases from restocking and farming.en_UK
dc.language.isoenen_UK
dc.publisherWiley-Blackwellen_UK
dc.relationPrado FDd, Vera M, Hermida M, Bouza C, Pardo BG, Vilas R, Blanco A, Fernandez C, Maroso F, Maes GE, Turan C, Volckaert FAMJ, Taggart J, Carr A & Ogden R (2018) Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus). Evolutionary Applications, 11 (8), pp. 1322-1341. https://doi.org/10.1111/eva.12628en_UK
dc.rights© 2018 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectadaptive variationen_UK
dc.subjectconservation geneticsen_UK
dc.subjectpopulation structureen_UK
dc.subjectRAD sequencingen_UK
dc.titleParallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus)en_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1111/eva.12628en_UK
dc.identifier.pmid30151043en_UK
dc.citation.jtitleEvolutionary Applicationsen_UK
dc.citation.issn1752-4571en_UK
dc.citation.issn1752-4563en_UK
dc.citation.volume11en_UK
dc.citation.issue8en_UK
dc.citation.spage1322en_UK
dc.citation.epage1341en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.citation.date25/03/2018en_UK
dc.description.notesAdditional co-authors: Einar Eg Nielsen, The Aquatrace Consortium, and Paulino Martínezen_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Gironaen_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Santiago de Compostela (USC)en_UK
dc.contributor.affiliationUniversity of Leuvenen_UK
dc.contributor.affiliationIskenderun Technical Universityen_UK
dc.contributor.affiliationKU Leuvenen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationFios Genomicsen_UK
dc.contributor.affiliationRoyal Zoological Society of Scotlanden_UK
dc.identifier.isiWOS:000442210300011en_UK
dc.identifier.scopusid2-s2.0-85044871119en_UK
dc.identifier.wtid894792en_UK
dc.contributor.orcid0000-0002-3843-9663en_UK
dc.date.accepted2018-02-23en_UK
dcterms.dateAccepted2018-02-23en_UK
dc.date.filedepositdate2018-04-27en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorPrado, Fernanda Dotti do|en_UK
local.rioxx.authorVera, Manuel|en_UK
local.rioxx.authorHermida, Miguel|en_UK
local.rioxx.authorBouza, Carmen|en_UK
local.rioxx.authorPardo, Belen G|en_UK
local.rioxx.authorVilas, Roman|en_UK
local.rioxx.authorBlanco, Andres|en_UK
local.rioxx.authorFernandez, Carlos|en_UK
local.rioxx.authorMaroso, Francesco|en_UK
local.rioxx.authorMaes, Gregory E|en_UK
local.rioxx.authorTuran, Cemal|en_UK
local.rioxx.authorVolckaert, Filip A M J|en_UK
local.rioxx.authorTaggart, John|0000-0002-3843-9663en_UK
local.rioxx.authorCarr, Adrian|en_UK
local.rioxx.authorOgden, Rob|en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2018-04-27en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2018-04-27|en_UK
local.rioxx.filenamePrado_et_al-2018-Evolutionary_Applications.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1752-4563en_UK
Appears in Collections:Aquaculture Journal Articles

Files in This Item:
File Description SizeFormat 
Prado_et_al-2018-Evolutionary_Applications.pdfFulltext - Published Version4.49 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.