Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWijeakumar, Sobanawartinyen_UK
dc.contributor.authorSpencer, John Pen_UK
dc.contributor.authorBohache, Kevinen_UK
dc.contributor.authorBoas, David Aen_UK
dc.contributor.authorMagnotta, Vincent Aen_UK
dc.date.accessioned2018-04-16T23:41:45Z-
dc.date.available2018-04-16T23:41:45Z-
dc.date.issued2015-02-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27026-
dc.description.abstractFunctional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationWijeakumar S, Spencer JP, Bohache K, Boas DA & Magnotta VA (2015) Validating a new methodology for optical probe design and image registration in fNIRS studies. NeuroImage, 106, pp. 86-100. https://doi.org/10.1016/j.neuroimage.2014.11.022en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectFunctional near infrared spectroscopyen_UK
dc.subjectProbe geometryen_UK
dc.subjectOptode co-registrationen_UK
dc.subjectVisual working memoryen_UK
dc.subjectAtlasViewerGUIen_UK
dc.titleValidating a new methodology for optical probe design and image registration in fNIRS studiesen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-23en_UK
dc.rights.embargoreason[Wijeakumar_NeuroImage_February_2015.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.neuroimage.2014.11.022en_UK
dc.identifier.pmid25705757en_UK
dc.citation.jtitleNeuroImageen_UK
dc.citation.issn1053-8119en_UK
dc.citation.volume106en_UK
dc.citation.spage86en_UK
dc.citation.epage100en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailsobanawartiny.wijeakumar@stir.ac.uken_UK
dc.citation.date22/11/2014en_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationUniversity of Iowaen_UK
dc.contributor.affiliationUniversity of Iowaen_UK
dc.contributor.affiliationHarvard Medical Schoolen_UK
dc.contributor.affiliationUniversity of Iowaen_UK
dc.identifier.isiWOS:000347101900008en_UK
dc.identifier.scopusid2-s2.0-84913554366en_UK
dc.identifier.wtid882172en_UK
dc.contributor.orcid0000-0002-6931-4329en_UK
dc.date.accepted2014-11-11en_UK
dcterms.dateAccepted2014-11-11en_UK
dc.date.filedepositdate2018-04-16en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWijeakumar, Sobanawartiny|0000-0002-6931-4329en_UK
local.rioxx.authorSpencer, John P|en_UK
local.rioxx.authorBohache, Kevin|en_UK
local.rioxx.authorBoas, David A|en_UK
local.rioxx.authorMagnotta, Vincent A|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2999-12-23en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameWijeakumar_NeuroImage_February_2015.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1053-8119en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
Wijeakumar_NeuroImage_February_2015.pdfFulltext - Published Version1.87 MBAdobe PDFUnder Embargo until 2999-12-23    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.