Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26893
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWijeakumar, Sobanawartinyen_UK
dc.contributor.authorAmbrose, Joseph Pen_UK
dc.contributor.authorSpencer, John Pen_UK
dc.contributor.authorCurtu, Rodicaen_UK
dc.date.accessioned2018-03-29T00:19:06Z-
dc.date.available2018-03-29T00:19:06Z-
dc.date.issued2017-02-28en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26893-
dc.description.abstractA fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that effectively span the gap between brain and behavior, between neuroscience and psychology. Here, we attempt to bridge this divide by formalizing an integrative cognitive neuroscience approach using dynamic field theory (DFT). We begin by providing an overview of how DFT seeks to understand the neural population dynamics that underlie cognitive processes through previous applications and comparisons to other modeling approaches. We then use previously published behavioral and neural data from a response selection Go/Nogo task as a case study for model simulations. Results from this study served as the ‘standard’ for comparisons with a model-based fMRI approach using dynamic neural fields (DNF). The tutorial explains the rationale and hypotheses involved in the process of creating the DNF architecture and fitting model parameters. Two DNF models, with similar structure and parameter sets, are then compared. Both models effectively simulated reaction times from the task as we varied the number of stimulus–response mappings and the proportion of Go trials. Next, we directly simulated hemodynamic predictions from the neural activation patterns from each model. These predictions were tested using general linear models (GLMs). Results showed that the DNF model that was created by tuning parameters to capture simultaneously trends in neural activation and behavioral data quantitatively outperformed a Standard GLM analysis of the same dataset. Further, by using the GLM results to assign functional roles to particular clusters in the brain, we illustrate how DNF models shed new light on the neural populations’ dynamics within particular brain regions. Thus, the present study illustrates how an interactive cognitive neuroscience model can be used in practice to bridge the gap between brain and behavior.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationWijeakumar S, Ambrose JP, Spencer JP & Curtu R (2017) Model-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approach. Journal of Mathematical Psychology, 76 (Part B), pp. 212-235. https://doi.org/10.1016/j.jmp.2016.11.002en_UK
dc.rightsAccepted refereed manuscript of: Wijeakumar S, Ambrose JP, Spencer JP & Curtu R (2017) Model-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approach, Journal of Mathematical Psychology, 76 (Part B), pp. 212-235. DOI: https://doi.org/10.1016/j.jmp.2016.11.002 © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectDynamic field theory modelingen_UK
dc.subjectIntegrative cognitive neuroscienceen_UK
dc.subjectResponse selectionen_UK
dc.subjectFunctional magnetic resonance imagingen_UK
dc.titleModel-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approachen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.jmp.2016.11.002en_UK
dc.identifier.pmid29118459en_UK
dc.citation.jtitleJournal of Mathematical Psychologyen_UK
dc.citation.issn0022-2496en_UK
dc.citation.volume76en_UK
dc.citation.issuePart Ben_UK
dc.citation.spage212en_UK
dc.citation.epage235en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailsobanawartiny.wijeakumar@stir.ac.uken_UK
dc.citation.date21/12/2016en_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationUniversity of Iowaen_UK
dc.contributor.affiliationUniversity of East Angliaen_UK
dc.contributor.affiliationUniversity of Iowaen_UK
dc.identifier.isiWOS:000395957800013en_UK
dc.identifier.scopusid2-s2.0-85008156900en_UK
dc.identifier.wtid505664en_UK
dc.contributor.orcid0000-0002-6931-4329en_UK
dc.date.accepted2016-12-21en_UK
dcterms.dateAccepted2016-12-21en_UK
dc.date.filedepositdate2018-02-27en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorWijeakumar, Sobanawartiny|0000-0002-6931-4329en_UK
local.rioxx.authorAmbrose, Joseph P|en_UK
local.rioxx.authorSpencer, John P|en_UK
local.rioxx.authorCurtu, Rodica|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2018-12-22en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2018-12-21en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2018-12-22|en_UK
local.rioxx.filenameAccepted_manuscript.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0022-2496en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
Accepted_manuscript.pdfFulltext - Accepted Version2.4 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.