Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26819
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.date.accessioned2018-03-03T04:54:32Z-
dc.date.available2018-03-03T04:54:32Z-
dc.date.issued2018-12-31en_UK
dc.identifier.other32en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26819-
dc.description.abstractThe goal of this note is to present a general approach to define the net reproduction function for a large class of nonlinear physiologically structured population models. In particular, we are going to show that this can be achieved in a natural way by reformulating a nonlinear problem as a family of linear ones; each of the linear problems describing the evolution of the population in a different, but constant environment. The reformulation of a nonlinear population model as a family of linear ones is a new approach, and provides an elegant way to study qualitative questions, for example the existence of positive steady states. To define the net reproduction number for any fixed (constant) environment, i.e. for the linear models, we use a fairly recent spectral theoretic result, which characterizes the connection between the spectral bound of an unbounded operator and the spectral radius of a corresponding bounded operator. For nonlinear models, varying the environment naturally leads to a net reproduction function.en_UK
dc.language.isoenen_UK
dc.publisherEDP Sciencesen_UK
dc.relationFarkas JZ (2018) Net reproduction functions for nonlinear structured population models. Mathematical Modelling of Natural Phenomena, 13 (3), Art. No.: 32. https://doi.org/10.1051/mmnp/2018036en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this work to be made available in this repository. Published in Mathematical Modelling of Natural Phenomena, 13.3 (2018) 32 by EDP Scienes. The original publication is available at www.mmnp-journal.org. DOI: https://doi.org/10.1051/mmnp/2018036en_UK
dc.subjectPhysiologically structured populationsen_UK
dc.subjectnet reproduction functionen_UK
dc.subjectpositive operatorsen_UK
dc.titleNet reproduction functions for nonlinear structured population modelsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargoreason[netrep-Feb2018.pdf] Until this work is published there will be an embargo on the full text of this work.en_UK
dc.identifier.doi10.1051/mmnp/2018036en_UK
dc.citation.jtitleMathematical Modelling of Natural Phenomenaen_UK
dc.citation.issn1760-6101en_UK
dc.citation.issn0973-5348en_UK
dc.citation.volume13en_UK
dc.citation.issue3en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailjozsef.farkas@stir.ac.uken_UK
dc.citation.date21/05/2018en_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000447913200009en_UK
dc.identifier.scopusid2-s2.0-85056109291en_UK
dc.identifier.wtid497415en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dc.date.accepted2018-03-09en_UK
dcterms.dateAccepted2018-03-09en_UK
dc.date.filedepositdate2018-03-02en_UK
rioxxterms.apcnot chargeden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2018-05-21en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2018-05-21en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-05-21|en_UK
local.rioxx.filenamenetrep-Feb2018.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0973-5348en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
netrep-Feb2018.pdfFulltext - Accepted Version293.35 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.