Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/26560
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Adair, Jason | en_UK |
dc.contributor.author | Brownlee, Alexander | en_UK |
dc.contributor.author | Daolio, Fabio | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.contributor.editor | Nicosia, G | en_UK |
dc.contributor.editor | Pardalos, P | en_UK |
dc.contributor.editor | Giuffrida, G | en_UK |
dc.contributor.editor | Umeton, R | en_UK |
dc.date.accessioned | 2018-04-07T05:03:59Z | - |
dc.date.available | 2018-04-07T05:03:59Z | - |
dc.date.issued | 2018 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/26560 | - |
dc.description.abstract | A new proof-of-concept method for optimising the performance of Brain Computer Interfaces (BCI) while minimising the quantity of required training data is introduced. This is achieved by using an evolutionary approach to rearrange the distribution of training instances, prior to the construction of an Ensemble Learning Generic Information (ELGI) model. The training data from a population was optimised to emphasise generality of the models derived from it, prior to a re-combination with participant-specific data via the ELGI approach, and training of classifiers. Evidence is given to support the adoption of this approach in the more difficult BCI conditions: smaller training sets, and those suffering from temporal drift. This paper serves as a case study to lay the groundwork for further exploration of this approach. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Adair J, Brownlee A, Daolio F & Ochoa G (2018) Evolving training sets for improved transfer learning in brain computer interfaces. In: Nicosia G, Pardalos P, Giuffrida G & Umeton R (eds.) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science, 10710. MOD 2017 - The Third International Conference on Machine Learning, Optimization and Big Data, Volterra, Italy, 14.09.2017-17.09.2017. Cham, Switzerland: Springer, pp. 186-197. https://link.springer.com/chapter/10.1007/978-3-319-72926-8_16; https://doi.org/10.1007/978-3-319-72926-8_16 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 10710 | en_UK |
dc.rights | Publisher policy allows this work to be made available in this repository. Published in: Nicosia G, Pardalos P, Giuffrida G, Umeton R (ed.) Machine Learning, Optimization, and Big Data. MOD 2017, Cham, Switzerland: Springer. MOD 2017 - The Third International Conference on Machine Learning, Optimization and Big Data, 14.9.2017 - 17.9.2017, Volterra, Italy, pp. 186-197. The final publication is available at Springer via https://doi.org/10.1007/978-3-319-72926-8_16 | en_UK |
dc.subject | Optimisation | en_UK |
dc.subject | Machine learning | en_UK |
dc.subject | Ensemble | en_UK |
dc.subject | Brain-computer interface | en_UK |
dc.subject | P300 | en_UK |
dc.subject | Evolutionary computation | en_UK |
dc.subject | Transfer learning | en_UK |
dc.title | Evolving training sets for improved transfer learning in brain computer interfaces | en_UK |
dc.type | Conference Paper | en_UK |
dc.identifier.doi | 10.1007/978-3-319-72926-8_16 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 186 | en_UK |
dc.citation.epage | 197 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.identifier.url | https://link.springer.com/chapter/10.1007/978-3-319-72926-8_16 | en_UK |
dc.author.email | alexander.brownlee@stir.ac.uk | en_UK |
dc.citation.btitle | Machine Learning, Optimization, and Big Data. MOD 2017 | en_UK |
dc.citation.conferencedates | 2017-09-14 - 2017-09-17 | en_UK |
dc.citation.conferencelocation | Volterra, Italy | en_UK |
dc.citation.conferencename | MOD 2017 - The Third International Conference on Machine Learning, Optimization and Big Data | en_UK |
dc.citation.date | 21/12/2017 | en_UK |
dc.citation.isbn | 978-3-319-72925-1 | en_UK |
dc.citation.isbn | 978-3-319-72926-8 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | Computing Science and Mathematics - Division | en_UK |
dc.contributor.affiliation | Robert Gordon University | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.isi | WOS:000426151600016 | en_UK |
dc.identifier.scopusid | 2-s2.0-85039452612 | en_UK |
dc.identifier.wtid | 504453 | en_UK |
dc.contributor.orcid | 0000-0003-4240-4161 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dc.date.accepted | 2017-07-15 | en_UK |
dcterms.dateAccepted | 2017-07-15 | en_UK |
dc.date.filedepositdate | 2018-01-19 | en_UK |
dc.relation.funderproject | DAASE: Dynamic Adaptive Automated Software Engineering | en_UK |
dc.relation.funderref | EP/J017515/1 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Adair, Jason| | en_UK |
local.rioxx.author | Brownlee, Alexander| | en_UK |
local.rioxx.author | Daolio, Fabio|0000-0003-4240-4161 | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.project | EP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.contributor | Nicosia, G| | en_UK |
local.rioxx.contributor | Pardalos, P| | en_UK |
local.rioxx.contributor | Giuffrida, G| | en_UK |
local.rioxx.contributor | Umeton, R| | en_UK |
local.rioxx.freetoreaddate | 2018-01-19 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2018-01-19| | en_UK |
local.rioxx.filename | evolving-training-sets.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-319-72926-8 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
evolving-training-sets.pdf | Fulltext - Accepted Version | 411.17 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.