Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26457
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrake, John Hen_UK
dc.contributor.authorSwan, Jerryen_UK
dc.contributor.authorNeumann, Geoffreyen_UK
dc.contributor.authorOzcan, Enderen_UK
dc.contributor.editorHu, Ben_UK
dc.contributor.editorLopez-Ibanez, Men_UK
dc.date.accessioned2018-01-20T04:16:06Z-
dc.date.available2018-01-20T04:16:06Z-
dc.date.issued2017en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26457-
dc.description.abstractOnline bin packing is a classic optimisation problem, widely tackled by heuristic methods. In addition to human-designed heuristic packing policies (e.g. first- or best- fit), there has been interest over the last decade in the automatic generation of policies. One of the main limitations of some previously-used policy representations is the trade-off between locality and granularity in the associated search space. In this article, we adopt an interpolation-based representation which has the jointly-desirable properties of being sparse and continuous (i.e. exhibits good genotype-to-phenotype locality). In contrast to previous approaches, the policy space is searchable via real-valued optimization methods. Packing policies using five different interpolation methods are comprehensively compared against a range of existing methods from the literature, and it is determined that the proposed method scales to larger instances than those in the literature.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationDrake JH, Swan J, Neumann G & Ozcan E (2017) Sparse, continuous policy representations for uniform online bin packing via regression of interpolants. In: Hu B & Lopez-Ibanez M (eds.) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science, 10197. European Conference on Evolutionary Computation in Combinatorial Optimization: EvoCOP 2017, Amsterdam, The Netherlands, 19.04.2017-21.04.2017. Cham, Switzerland: Springer, pp. 189-200. https://doi.org/10.1007/978-3-319-55453-2_13en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 10197en_UK
dc.rightsPublisher policy allows this work to be made available in this repository.Drake J.H., Swan J., Neumann G., Özcan E. (2017) Sparse, Continuous Policy Representations for Uniform Online Bin Packing via Regression of Interpolants. In: Hu B., López-Ibáñez M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science, vol 10197. Springer, Cham. The final publication is available at Springer via https://doi.org/10.1007/978-3-319-55453-2_13en_UK
dc.subjectHyper-heuristicsen_UK
dc.subjectOnline bin packingen_UK
dc.subjectCMA-ESen_UK
dc.subjectHeuristic generationen_UK
dc.subjectSparse policy representationsen_UK
dc.subjectMetaheuristicsen_UK
dc.subjectOptimisationen_UK
dc.titleSparse, continuous policy representations for uniform online bin packing via regression of interpolantsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-319-55453-2_13en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage189en_UK
dc.citation.epage200en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleEvolutionary Computation in Combinatorial Optimization. EvoCOP 2017en_UK
dc.citation.conferencedates2017-04-19 - 2017-04-21en_UK
dc.citation.conferencelocationAmsterdam, The Netherlandsen_UK
dc.citation.conferencenameEuropean Conference on Evolutionary Computation in Combinatorial Optimization: EvoCOP 2017en_UK
dc.citation.date09/03/2017en_UK
dc.citation.isbn978-3-319-55452-5en_UK
dc.citation.isbn978-3-319-55453-2en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationQueen Mary, University of Londonen_UK
dc.contributor.affiliationUniversity of Yorken_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.identifier.isiWOS:000417370500013en_UK
dc.identifier.scopusid2-s2.0-85017501126en_UK
dc.identifier.wtid530755en_UK
dc.date.accepted2017-01-09en_UK
dcterms.dateAccepted2017-01-09en_UK
dc.date.filedepositdate2017-12-22en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorDrake, John H|en_UK
local.rioxx.authorSwan, Jerry|en_UK
local.rioxx.authorNeumann, Geoffrey|en_UK
local.rioxx.authorOzcan, Ender|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorHu, B|en_UK
local.rioxx.contributorLopez-Ibanez, M|en_UK
local.rioxx.freetoreaddate2021-05-25en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-05-25|en_UK
local.rioxx.filenamesparse-continuous-policy.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-55453-2en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
sparse-continuous-policy.pdfFulltext - Accepted Version299.85 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.