Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26434
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArmas, Rolandoen_UK
dc.contributor.authorAguirre, Hernanen_UK
dc.contributor.authorDaolio, Fabioen_UK
dc.contributor.authorTanaka, Kiyoshien_UK
dc.date.accessioned2018-01-11T01:05:20Z-
dc.date.available2018-01-11T01:05:20Z-
dc.date.issued2017-12-13en_UK
dc.identifier.othere0188757en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26434-
dc.description.abstractThis work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.en_UK
dc.language.isoenen_UK
dc.publisherPublic Library of Scienceen_UK
dc.relationArmas R, Aguirre H, Daolio F & Tanaka K (2017) Evolutionary design optimization of traffic signals applied to Quito city. PLoS ONE, 12 (12), Art. No.: e0188757. https://doi.org/10.1371/journal.pone.0188757en_UK
dc.rights© 2017 Armas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are crediteden_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.titleEvolutionary design optimization of traffic signals applied to Quito cityen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1371/journal.pone.0188757en_UK
dc.identifier.pmid29236733en_UK
dc.citation.jtitlePLoS ONEen_UK
dc.citation.issn1932-6203en_UK
dc.citation.volume12en_UK
dc.citation.issue12en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date13/12/2017en_UK
dc.contributor.affiliationShinshu Universityen_UK
dc.contributor.affiliationShinshu Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationShinshu Universityen_UK
dc.identifier.isiWOS:000417884100029en_UK
dc.identifier.scopusid2-s2.0-85038249932en_UK
dc.identifier.wtid507705en_UK
dc.contributor.orcid0000-0003-4240-4161en_UK
dc.date.accepted2017-10-11en_UK
dcterms.dateAccepted2017-10-11en_UK
dc.date.filedepositdate2017-12-21en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorArmas, Rolando|en_UK
local.rioxx.authorAguirre, Hernan|en_UK
local.rioxx.authorDaolio, Fabio|0000-0003-4240-4161en_UK
local.rioxx.authorTanaka, Kiyoshi|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-12-21en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-12-21|en_UK
local.rioxx.filenamejournal.pone.0188757.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
journal.pone.0188757.pdfFulltext - Published Version41.26 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.