Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Growth responses of Calamagrostis lapponica to simulated environmental change in the sub-arctic
Author(s): Parsons, Andrew N
Press, Malcolm C
Wookey, Philip
Welker, Jeffery M
Robinson, Clare H
Callaghan, Terry V
Lee, John A
Contact Email:
Issue Date: Feb-1995
Citation: Parsons AN, Press MC, Wookey P, Welker JM, Robinson CH, Callaghan TV & Lee JA (1995) Growth responses of Calamagrostis lapponica to simulated environmental change in the sub-arctic, Oikos, 72 (1), pp. 61-66.
Abstract: A sub-arctic heath community dominated by dwarf shrubs has been subjected to three components of environmental change (temperature, water and fertilizer) in a factorial experiment over three growing seasons. Above-ground biomass of the most abundant grass in the ecosystem, Calamagrostis lapponica, was measured after one, two and three seasons, shoot height and flowering frequency were recorded after two and three seasons. There was up to 50 times more above-ground biomass at the end of the second season compared with the end of the first season. Fertiliser had the greatest effect on all parameters, resulting in greater biomass, increased flowering and a greater shoot height. The mean biomass of C. lapponica was greatest in the third season, but still contributed less than 8% of the above-ground biomass in the fertilised plots; the dominant species being ericaceous dwarf shrubs. The response of the grass to temperature and water was not as marked as the response to fertiliser. Temperature increase led to greater shoot height in both seasons whilst in the first season both warmer temperature and water additions resulted in greater biomass. All treatment effects were less in the third season than in the second, perhaps because of competition from the dominant dwarf shrubs which respond more slowly to the perturbations than the grass. The responses of the C. lapponica and the dwarf shrubs to the treatments are compared. If climate change results in greater solute availability in this ecosystem, there may be a marked change in species composition with C. lapponica becoming more prevalent.
DOI Link:
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.

Files in This Item:
File Description SizeFormat 
3546038.pdf1.07 MBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.