Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/26391
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Swingler, Kevin | en_UK |
dc.date.accessioned | 2017-12-21T00:45:48Z | - |
dc.date.available | 2017-12-21T00:45:48Z | - |
dc.date.issued | 2015-11-12 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/26391 | - |
dc.description.abstract | A mixed order hyper network (MOHN) is a neural network in which weights can connect any number of neurons, rather than the usual two. MOHNs can be used as content addressable memories with higher capacity than standard Hopfield networks. They can also be used for regression, clustering, classification, and as fitness models for use in heuristic optimisation. This paper presents a set of methods for estimating the values of the weights in a MOHN from training data. The different methods are compared to each other and to a standard MLP trained by back propagation and found to be faster to train than the MLP and more reliable as the error function does not contain local minima. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Science and Technology Publications | en_UK |
dc.relation | Swingler K (2015) A Comparison of Learning Rules for Mixed Order Hyper Networks. In: Proceedings of the 7th International Joint Conference on Computational Intelligence. NCTA (IJCCI). Setubal, Portugal: Science and Technology Publications, pp. 17-27. http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220%2f0005588000170027; https://doi.org/10.5220/0005588000170027 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | High Order Networks | en_UK |
dc.subject | Learning Rules | en_UK |
dc.title | A Comparison of Learning Rules for Mixed Order Hyper Networks | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2999-12-13 | en_UK |
dc.rights.embargoreason | [NCTA_MOHN_Learn_Final.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.5220/0005588000170027 | en_UK |
dc.citation.spage | 17 | en_UK |
dc.citation.epage | 27 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.identifier.url | http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220%2f0005588000170027 | en_UK |
dc.author.email | kevin.swingler@stir.ac.uk | en_UK |
dc.citation.btitle | Proceedings of the 7th International Joint Conference on Computational Intelligence | en_UK |
dc.citation.conferencename | NCTA (IJCCI) | en_UK |
dc.citation.date | 30/11/2015 | en_UK |
dc.citation.isbn | 978-989-758-157-1 | en_UK |
dc.publisher.address | Setubal, Portugal | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.scopusid | 2-s2.0-84960945697 | en_UK |
dc.identifier.wtid | 568003 | en_UK |
dc.contributor.orcid | 0000-0002-4517-9433 | en_UK |
dc.date.accepted | 2015-09-18 | en_UK |
dcterms.dateAccepted | 2015-09-18 | en_UK |
dc.date.filedepositdate | 2017-12-20 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Swingler, Kevin|0000-0002-4517-9433 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2999-12-13 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | NCTA_MOHN_Learn_Final.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-989-758-157-1 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NCTA_MOHN_Learn_Final.pdf | Fulltext - Published Version | 173.4 kB | Adobe PDF | Under Embargo until 2999-12-13 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.