Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26343
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnbar, Mohammeden_UK
dc.contributor.authorAbdullah, Rosnien_UK
dc.contributor.authorAl-Tamimi, Bassam Najien_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2018-05-04T23:45:45Z-
dc.date.available2018-05-04T23:45:45Z-
dc.date.issued2018-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26343-
dc.description.abstractRouter advertisement (RA) flooding attack aims to exhaust all node resources, such as CPU and memory, attached to routers on the same link. A biologically inspired machine learning-based approach is proposed in this study to detect RA flooding attacks. The proposed technique exploits information gain ratio (IGR) and principal component analysis (PCA) for feature selection and a support vector machine (SVM)-based predictor model, which can also detect input traffic anomaly. A real benchmark dataset obtained from National Advanced IPv6 Center of Excellence laboratory is used to evaluate the proposed technique. The evaluation process is conducted with two experiments. The first experiment investigates the effect of IGR and PCA feature selection methods to identify the most contributed features for the SVM training model. The second experiment evaluates the capability of SVM to detect RA flooding attacks. The results show that the proposed technique demonstrates excellent detection accuracy and is thus an effective choice for detecting RA flooding attacks. The main contribution of this study is identification of a set of new features that are related to RA flooding attack by utilizing IGR and PCA algorithms. The proposed technique in this paper can effectively detect the presence of RA flooding attack in IPv6 network.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationAnbar M, Abdullah R, Al-Tamimi BN & Hussain A (2018) A Machine Learning Approach to Detect Router Advertisement Flooding Attacks in Next-Generation IPv6 Networks. Cognitive Computation, 10 (2), pp. 201-214. https://doi.org/10.1007/s12559-017-9519-8en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a post-peer-review, pre-copyedit version of an article published in Cognitive Computation. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12559-017-9519-8en_UK
dc.subjectRA flooding attacken_UK
dc.subjectNetwork securityen_UK
dc.subjectIGRen_UK
dc.subjectPCAen_UK
dc.subjectSVMen_UK
dc.subjectIPv6 securityen_UK
dc.titleA Machine Learning Approach to Detect Router Advertisement Flooding Attacks in Next-Generation IPv6 Networksen_UK
dc.typeJournal Articleen_UK
dc.rights.embargoreason[paper.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1007/s12559-017-9519-8en_UK
dc.citation.jtitleCognitive Computationen_UK
dc.citation.issn1866-9964en_UK
dc.citation.issn1866-9956en_UK
dc.citation.volume10en_UK
dc.citation.issue2en_UK
dc.citation.spage201en_UK
dc.citation.epage214en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date23/10/2017en_UK
dc.contributor.affiliationUniversity of Science, Malaysia (USM)en_UK
dc.contributor.affiliationUniversity of Science, Malaysia (USM)en_UK
dc.contributor.affiliationTaibah Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000430190600002en_UK
dc.identifier.scopusid2-s2.0-85031915216en_UK
dc.identifier.wtid883020en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2017-10-10en_UK
dcterms.dateAccepted2017-10-10en_UK
dc.date.filedepositdate2017-12-13en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAnbar, Mohammed|en_UK
local.rioxx.authorAbdullah, Rosni|en_UK
local.rioxx.authorAl-Tamimi, Bassam Naji|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2019-03-24en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-03-23en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-03-24|en_UK
local.rioxx.filenamepaper.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1866-9956en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
paper.pdfFulltext - Accepted Version801.6 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.