Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26277
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWajid, Summrinaen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorHuang, Kaizhuen_UK
dc.date.accessioned2018-02-23T02:02:19Z-
dc.date.available2018-02-23T02:02:19Z-
dc.date.issued2018-12-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26277-
dc.description.abstractIn this paper, we present a novel feature extraction technique, termed Three-Dimensional Local Energy-Based Shape Histogram (3D-LESH), and exploit it to detect breast cancer in volumetric medical images. The technique is incorporated as part of an intelligent expert system that can aid medical practitioners making diagnostic decisions. Analysis of volumetric images, slice by slice, is cumbersome and inefficient. Hence, 3D-LESH is designed to compute a histogram-based feature set from a local energy map, calculated using a phase congruency (PC) measure of volumetric Magnetic Resonance Imaging (MRI) scans in 3D space. 3D-LESH features are invariant to contrast intensity variations within different slices of the MRI scan and are thus suitable for medical image analysis. The contribution of this article is manifold. First, we formulate a novel 3D-LESH feature extraction technique for 3D medical images to analyse volumetric images. Further, the proposed 3D-LESH algorithmis, for the first time, applied to medical MRI images. The final contribution is the design of an intelligent clinical decision support system (CDSS) as a multi-stage approach, combining novel 3D-LESH feature extraction with machine learning classifiers, to detect cancer from breast MRI scans. The proposed system applies contrast-limited adaptive histogram equalisation (CLAHE) to the MRI images before extracting 3D-LESH features. Furthermore, a selected subset of these features is fed into a machine-learning classifier, namely, a support vector machine (SVM), an extreme learning machine (ELM) or an echo state network (ESN) classifier, to detect abnormalities and distinguish between different stages of abnormality. We demonstrate the performance of the proposed technique by its application to benchmark breast cancer MRI images. The results indicate high-performance accuracy of the proposed system (98%±0.0050, with an area under a receiver operating charactertistic curve value of 0.9900 ± 0.0050) with multiple classifiers. When compared with the state-of-the-art wavelet-based feature extraction technique, statistical analysis provides conclusive evidence of the significance of our proposed 3D-LESH algorithm.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationWajid S, Hussain A & Huang K (2018) Three-Dimensional Local Energy-Based Shape Histogram (3D-LESH)-Based Feature Extraction - A Novel Technique. Expert Systems with Applications, 112, pp. 388-400. https://doi.org/10.1016/j.eswa.2017.11.057en_UK
dc.rightsThis article is published under a Creative Commons Attribution 4.0 International license (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectClinical decision support system (CDSS)en_UK
dc.subjectEcho state network (ESN)en_UK
dc.subjectExtreme learning machine (ELM)en_UK
dc.subjectLocal energy-based shape histogram (LESH)en_UK
dc.subjectMagnetic resonance imaging (MRI)en_UK
dc.subjectSupport vector machine (SVM)en_UK
dc.titleThree-Dimensional Local Energy-Based Shape Histogram (3D-LESH)-Based Feature Extraction - A Novel Techniqueen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.eswa.2017.11.057en_UK
dc.citation.jtitleExpert Systems with Applicationsen_UK
dc.citation.issn0957-4174en_UK
dc.citation.volume112en_UK
dc.citation.spage388en_UK
dc.citation.epage400en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.citation.date05/12/2017en_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationXi’an Jiaotong Universityen_UK
dc.identifier.isiWOS:000442708600028en_UK
dc.identifier.scopusid2-s2.0-85049309695en_UK
dc.identifier.wtid509426en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2017-11-30en_UK
dcterms.dateAccepted2017-11-30en_UK
dc.date.filedepositdate2017-12-04en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWajid, Summrina|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorHuang, Kaizhu|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2017-12-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-12-05en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-12-05|en_UK
local.rioxx.filename1-s2.0-S0957417417308138-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0957-4174en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0957417417308138-main.pdfFulltext - Published Version1.99 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.