Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26262
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Shufeien_UK
dc.contributor.authorHuang, Kaizhuen_UK
dc.contributor.authorZhang, Ruien_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2018-04-07T00:21:50Z-
dc.date.available2018-04-07T00:21:50Z-
dc.date.issued2018-02en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26262-
dc.description.abstractNeural networks (NN) have achieved great successes in pattern recognition and machine learning. However, the success of a NN usually relies on the provision of a sufficiently large number of data samples as training data. When fed with a limited data set, a NN’s performance may be degraded significantly. In this paper, a novel NN structure is proposed called a memory network. It is inspired by the cognitive mechanism of human beings, which can learn effectively, even from limited data. Taking advantage of the memory from previous samples, the new model achieves a remarkable improvement in performance when trained using limited data. The memory network is demonstrated here using the multi-layer perceptron (MLP) as a base model. However, it would be straightforward to extend the idea to other neural networks, e.g., convolutional neural networks (CNN). In this paper, the memory network structure is detailed, the training algorithm is presented, and a series of experiments are conducted to validate the proposed framework. Experimental results show that the proposed model outperforms traditional MLP-based models as well as other competitive algorithms in response to two real benchmark data sets.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationZhang S, Huang K, Zhang R & Hussain A (2018) Learning from Few Samples with Memory Network. Cognitive Computation, 10 (1), pp. 15-22. https://doi.org/10.1007/s12559-017-9507-zen_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this work to be made available in this repository; The final publication is available at Springer via https://doi.org/10.1007/s12559-017-9507-zen_UK
dc.subjectMemoryen_UK
dc.subjectMulti-layer perceptronen_UK
dc.subjectNeural networken_UK
dc.subjectRecognitionen_UK
dc.subjectPrior knowledgeen_UK
dc.titleLearning from Few Samples with Memory Networken_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2019-01-26en_UK
dc.rights.embargoreason[memory_network_ML3-2.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1007/s12559-017-9507-zen_UK
dc.citation.jtitleCognitive Computationen_UK
dc.citation.issn1866-9964en_UK
dc.citation.issn1866-9956en_UK
dc.citation.volume10en_UK
dc.citation.issue1en_UK
dc.citation.spage15en_UK
dc.citation.epage22en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date25/10/2017en_UK
dc.contributor.affiliationXi'an Jiaotong-Liverpool University, Chinaen_UK
dc.contributor.affiliationXi’an Jiaotong Universityen_UK
dc.contributor.affiliationXi’an Jiaotong Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000426075500003en_UK
dc.identifier.scopusid2-s2.0-85032029937en_UK
dc.identifier.wtid512462en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2017-09-06en_UK
dcterms.dateAccepted2017-09-06en_UK
dc.date.filedepositdate2017-12-01en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorZhang, Shufei|en_UK
local.rioxx.authorHuang, Kaizhu|en_UK
local.rioxx.authorZhang, Rui|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2019-01-26en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-01-25en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-01-26|en_UK
local.rioxx.filenamememory_network_ML3-2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1866-9956en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
memory_network_ML3-2.pdfFulltext - Accepted Version1.34 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.