Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26257
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli, Liaqaten_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorHoward, Newtonen_UK
dc.contributor.authorShah, Amir Aen_UK
dc.contributor.authorSudhakar, Unnamen_UK
dc.contributor.authorShah, Moiz Alien_UK
dc.contributor.authorHussain, Zain Uen_UK
dc.contributor.editorLiu, CLen_UK
dc.contributor.editorHussain, Aen_UK
dc.contributor.editorLuo, Ben_UK
dc.contributor.editorTan, KCen_UK
dc.contributor.editorZeng, Yen_UK
dc.contributor.editorZhang, Zen_UK
dc.date.accessioned2017-12-01T00:47:58Z-
dc.date.available2017-12-01T00:47:58Z-
dc.date.issued2016en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26257-
dc.description.abstractEarly detection and diagnosis of Hepatocellular Carcinoma (HCC) is the most discriminating step in liver cancer management. Image processing is primarily used, where fast and accurate Computed Tomography (CT) liver image segmentation is required for effective clinical studies and treatment plans. The purpose of this research is to develop an automated HCC detection and diagnosis system, able to work with HCC lesions from liver CT images, with maximum sensitivity and minimum specificity.  Our proposed system carried out automated segmentation of HCC lesions from 3D liver CT images. First, based on chosen histogram thresholds, we create a mask to predict the segmentation area by exploiting prior knowledge of the location and shape. Next, we obtain a 3D HCC lesion using an appropriate combination of cancer area pixel density calculations, histogram analysis and morphological processing. To demonstrate the feasibility of our approach, we carried out a series of experiments using 31 CT cases, comprised of 18 HCC lesions and 13 non HCC lesions. The acquired CT images (in DICOM format) had 128 channels of 512×512 pixels, each with pixel space varying between 0.54 and 0.85.  Simulation results showed 92.68% accuracy and a false positive incidence of 9.75%. These were also compared and validated against manual segmentation carried out by a radiologist and other widely used image segmentation methods.  Fully automated HCC detection can be efficiently used to aid medical professionals in diagnosing HCC. A limitation of this research is that the performance was evaluated on a small dataset, which does not allow us to confirm robustness of this system. For future work, we will collect additional clinical and CT image data to ensure comprehensive evaluation and clinical validation. We also intend to apply this automated HCC detection and diagnosis system to Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) datasets, as well as adapting it for diagnosing different liver diseases using state-of-the-art feature extraction and selection, and machine learning classification techniques.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationAli L, Hussain A, Li J, Howard N, Shah AA, Sudhakar U, Shah MA & Hussain ZU (2016) A novel fully automated liver and HCC tumor segmentation system using morphological operations. In: Liu C, Hussain A, Luo B, Tan K, Zeng Y & Zhang Z (eds.) Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes in Computer Science, 10023. BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems, Beijing, China, 28.11.2016-30.11.2016. Cham, Switzerland: Springer, pp. 240-250. https://doi.org/10.1007/978-3-319-49685-6_22en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 10023en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectHCCen_UK
dc.subjectLesionen_UK
dc.subjectDetectionen_UK
dc.subjectSegmentationen_UK
dc.subjectCTen_UK
dc.titleA novel fully automated liver and HCC tumor segmentation system using morphological operationsen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate3000-10-14en_UK
dc.rights.embargoreason[Ali_etal_LNCS_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-319-49685-6_22en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage240en_UK
dc.citation.epage250en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.btitleAdvances in Brain Inspired Cognitive Systems. BICS 2016en_UK
dc.citation.conferencedates2016-11-28 - 2016-11-30en_UK
dc.citation.conferencelocationBeijing, Chinaen_UK
dc.citation.conferencenameBICS 2016: 8th International Conference on Brain-Inspired Cognitive Systemsen_UK
dc.citation.date13/11/2016en_UK
dc.citation.isbn978-3-319-49684-9en_UK
dc.citation.isbn978-3-319-49685-6en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Oxforden_UK
dc.contributor.affiliationNHS Ayrshire & Arranen_UK
dc.contributor.affiliationNHS Ayrshire & Arranen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of St Andrewsen_UK
dc.identifier.scopusid2-s2.0-84997190844en_UK
dc.identifier.wtid538753en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dc.date.accepted2016-08-10en_UK
dcterms.dateAccepted2016-08-10en_UK
dc.date.filedepositdate2017-11-30en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAli, Liaqat|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorHoward, Newton|en_UK
local.rioxx.authorShah, Amir A|en_UK
local.rioxx.authorSudhakar, Unnam|en_UK
local.rioxx.authorShah, Moiz Ali|en_UK
local.rioxx.authorHussain, Zain U|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.contributorLiu, CL|en_UK
local.rioxx.contributorHussain, A|en_UK
local.rioxx.contributorLuo, B|en_UK
local.rioxx.contributorTan, KC|en_UK
local.rioxx.contributorZeng, Y|en_UK
local.rioxx.contributorZhang, Z|en_UK
local.rioxx.freetoreaddate3000-10-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameAli_etal_LNCS_2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-49685-6en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Ali_etal_LNCS_2016.pdfFulltext - Published Version58.16 MBAdobe PDFUnder Embargo until 3000-10-14    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.