Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26256
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Feien_UK
dc.contributor.authorXue, Xiangshangen_UK
dc.contributor.authorWang, Junen_UK
dc.contributor.authorSun, Jinpingen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorYang, Erfuen_UK
dc.contributor.editorLiu, CLen_UK
dc.contributor.editorHussain, Aen_UK
dc.contributor.editorLuo, Ben_UK
dc.contributor.editorTan, KCen_UK
dc.contributor.editorZeng, Yen_UK
dc.contributor.editorZhang, Zen_UK
dc.date.accessioned2017-12-01T00:44:44Z-
dc.date.available2017-12-01T00:44:44Z-
dc.date.issued2016en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26256-
dc.description.abstractThe selective visual attention mechanism in human visual system helps human to act efficiently when dealing with massive visual information. Over the last two decades, biologically inspired attention model has drawn lots of research attention and many models have been proposed. However, the top-down cues in human brain are still not fully understood, which makes top-down models not biologically plausible. This paper proposes an attention model containing both the bottom-up stage and top-down stage for the target detection from SAR (Synthetic Aperture Radar) images. The bottom-up stage is based on the biologically-inspired Itti model and is modified by taking fully into account the characteristic of SAR images. The top-down stage contains a novel learning strategy to make the full use of prior information. It is an extension of the bottom-up process and more biologically plausible. The experiments in this research aim to detect vehicles in different scenes to validate the proposed model by comparing with the well-known CFAR (constant false alarm rate) algorithm.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationGao F, Xue X, Wang J, Sun J, Hussain A & Yang E (2016) Visual attention model with a novel learning strategy and its application to target detection from SAR images. In: Liu C, Hussain A, Luo B, Tan K, Zeng Y & Zhang Z (eds.) Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes in Computer Science, 10023. BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems, Beijing, China, 28.11.2016-30.11.2016. Cham, Switzerland: Springer, pp. 149-160. https://doi.org/10.1007/978-3-319-49685-6_14en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 10023en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectVisual attention modelen_UK
dc.subjectObject detectionen_UK
dc.subjectLearning strategyen_UK
dc.subjectSynthetic Aperture Radar (SAR) imagesen_UK
dc.titleVisual attention model with a novel learning strategy and its application to target detection from SAR imagesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate3000-10-14en_UK
dc.rights.embargoreason[Gao_etal_LNCS_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-319-49685-6_14en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage149en_UK
dc.citation.epage160en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.btitleAdvances in Brain Inspired Cognitive Systems. BICS 2016en_UK
dc.citation.conferencedates2016-11-28 - 2016-11-30en_UK
dc.citation.conferencelocationBeijing, Chinaen_UK
dc.citation.conferencenameBICS 2016: 8th International Conference on Brain-Inspired Cognitive Systemsen_UK
dc.citation.date13/11/2016en_UK
dc.citation.isbn978-3-319-49684-9en_UK
dc.citation.isbn978-3-319-49685-6en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.scopusid2-s2.0-84997235981en_UK
dc.identifier.wtid538647en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-08-10en_UK
dcterms.dateAccepted2016-08-10en_UK
dc.date.filedepositdate2017-11-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGao, Fei|en_UK
local.rioxx.authorXue, Xiangshang|en_UK
local.rioxx.authorWang, Jun|en_UK
local.rioxx.authorSun, Jinping|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorYang, Erfu|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorLiu, CL|en_UK
local.rioxx.contributorHussain, A|en_UK
local.rioxx.contributorLuo, B|en_UK
local.rioxx.contributorTan, KC|en_UK
local.rioxx.contributorZeng, Y|en_UK
local.rioxx.contributorZhang, Z|en_UK
local.rioxx.freetoreaddate3000-10-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameGao_etal_LNCS_2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-49685-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Gao_etal_LNCS_2016.pdfFulltext - Published Version2.42 MBAdobe PDFUnder Embargo until 3000-10-14    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.