Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/26256
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gao, Fei | en_UK |
dc.contributor.author | Xue, Xiangshang | en_UK |
dc.contributor.author | Wang, Jun | en_UK |
dc.contributor.author | Sun, Jinping | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.contributor.author | Yang, Erfu | en_UK |
dc.contributor.editor | Liu, CL | en_UK |
dc.contributor.editor | Hussain, A | en_UK |
dc.contributor.editor | Luo, B | en_UK |
dc.contributor.editor | Tan, KC | en_UK |
dc.contributor.editor | Zeng, Y | en_UK |
dc.contributor.editor | Zhang, Z | en_UK |
dc.date.accessioned | 2017-12-01T00:44:44Z | - |
dc.date.available | 2017-12-01T00:44:44Z | - |
dc.date.issued | 2016 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/26256 | - |
dc.description.abstract | The selective visual attention mechanism in human visual system helps human to act efficiently when dealing with massive visual information. Over the last two decades, biologically inspired attention model has drawn lots of research attention and many models have been proposed. However, the top-down cues in human brain are still not fully understood, which makes top-down models not biologically plausible. This paper proposes an attention model containing both the bottom-up stage and top-down stage for the target detection from SAR (Synthetic Aperture Radar) images. The bottom-up stage is based on the biologically-inspired Itti model and is modified by taking fully into account the characteristic of SAR images. The top-down stage contains a novel learning strategy to make the full use of prior information. It is an extension of the bottom-up process and more biologically plausible. The experiments in this research aim to detect vehicles in different scenes to validate the proposed model by comparing with the well-known CFAR (constant false alarm rate) algorithm. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Gao F, Xue X, Wang J, Sun J, Hussain A & Yang E (2016) Visual attention model with a novel learning strategy and its application to target detection from SAR images. In: Liu C, Hussain A, Luo B, Tan K, Zeng Y & Zhang Z (eds.) Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes in Computer Science, 10023. BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems, Beijing, China, 28.11.2016-30.11.2016. Cham, Switzerland: Springer, pp. 149-160. https://doi.org/10.1007/978-3-319-49685-6_14 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 10023 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Visual attention model | en_UK |
dc.subject | Object detection | en_UK |
dc.subject | Learning strategy | en_UK |
dc.subject | Synthetic Aperture Radar (SAR) images | en_UK |
dc.title | Visual attention model with a novel learning strategy and its application to target detection from SAR images | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 3000-10-14 | en_UK |
dc.rights.embargoreason | [Gao_etal_LNCS_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/978-3-319-49685-6_14 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 149 | en_UK |
dc.citation.epage | 160 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | ahu@cs.stir.ac.uk | en_UK |
dc.citation.btitle | Advances in Brain Inspired Cognitive Systems. BICS 2016 | en_UK |
dc.citation.conferencedates | 2016-11-28 - 2016-11-30 | en_UK |
dc.citation.conferencelocation | Beijing, China | en_UK |
dc.citation.conferencename | BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems | en_UK |
dc.citation.date | 13/11/2016 | en_UK |
dc.citation.isbn | 978-3-319-49684-9 | en_UK |
dc.citation.isbn | 978-3-319-49685-6 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Strathclyde | en_UK |
dc.identifier.scopusid | 2-s2.0-84997235981 | en_UK |
dc.identifier.wtid | 538647 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dc.date.accepted | 2016-08-10 | en_UK |
dcterms.dateAccepted | 2016-08-10 | en_UK |
dc.date.filedepositdate | 2017-11-30 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Gao, Fei| | en_UK |
local.rioxx.author | Xue, Xiangshang| | en_UK |
local.rioxx.author | Wang, Jun| | en_UK |
local.rioxx.author | Sun, Jinping| | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.author | Yang, Erfu| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Liu, CL| | en_UK |
local.rioxx.contributor | Hussain, A| | en_UK |
local.rioxx.contributor | Luo, B| | en_UK |
local.rioxx.contributor | Tan, KC| | en_UK |
local.rioxx.contributor | Zeng, Y| | en_UK |
local.rioxx.contributor | Zhang, Z| | en_UK |
local.rioxx.freetoreaddate | 3000-10-14 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Gao_etal_LNCS_2016.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-319-49685-6 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gao_etal_LNCS_2016.pdf | Fulltext - Published Version | 2.42 MB | Adobe PDF | Under Embargo until 3000-10-14 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.