http://hdl.handle.net/1893/26255
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Peer Review Status: | Refereed |
Author(s): | Razzaq, Saad Maqbool, Fahad Hussain, Amir |
Contact Email: | ahu@cs.stir.ac.uk |
Title: | Modified cat swarm optimization for clustering |
Editor(s): | Liu, CL Hussain, A Luo, B Tan, KC Zeng, Y Zhang, Z |
Citation: | Razzaq S, Maqbool F & Hussain A (2016) Modified cat swarm optimization for clustering. In: Liu C, Hussain A, Luo B, Tan K, Zeng Y & Zhang Z (eds.) Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes in Computer Science, 10023. BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems, Beijing, China, 28.11.2016-30.11.2016. Cham, Switzerland: Springer, pp. 161-170. https://doi.org/10.1007/978-3-319-49685-6_15 |
Issue Date: | 2016 |
Date Deposited: | 30-Nov-2017 |
Series/Report no.: | Lecture Notes in Computer Science, 10023 |
Conference Name: | BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems |
Conference Dates: | 2016-11-28 - 2016-11-30 |
Conference Location: | Beijing, China |
Abstract: | Clustering is one of the most challenging optimization problems. Many Swarm Intelligence techniques including Ant Colony optimization (ACO), Particle Swarm Optimization (PSO), and Honey Bee Optimization (HBO) have been used to solve clustering. Cat Swarm Optimization (CSO) is one of the newly proposed heuristics in swarm intelligence, which is generated by observing the behavior of cats, and has been used for clustering and numerical function optimization. CSO based clustering is dependent on a pre-specified value of K i.e. Number of Clusters. In this paper we have proposed a “Modified Cat Swam Optimization (MCSO)” heuristic to discover clusters based on the nature of data rather than user specified K. MCSO performs a data scan to determine the initial cluster centers. We have compared the results of MCSO with CSO to demonstrate the enhanced efficiency and accuracy of our proposed technique. |
Status: | VoR - Version of Record |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
Razzaq_etal_LNCS_2016.pdf | Fulltext - Published Version | 2.71 MB | Adobe PDF | Under Embargo until 3000-10-14 Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.