Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/26251
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Dong | en_UK |
dc.contributor.author | Zhou, Qiang | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.contributor.editor | Liu, CL | en_UK |
dc.contributor.editor | Hussain, A | en_UK |
dc.contributor.editor | Luo, B | en_UK |
dc.contributor.editor | Tan, KC | en_UK |
dc.contributor.editor | Zeng, Y | en_UK |
dc.contributor.editor | Zhang, Z | en_UK |
dc.date.accessioned | 2017-12-01T00:29:41Z | - |
dc.date.available | 2017-12-01T00:29:41Z | - |
dc.date.issued | 2016 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/26251 | - |
dc.description.abstract | Large-scale deep neural models, e.g., deep neural networks (DNN) and recurrent neural networks (RNN), have demonstrated significant success in solving various challenging tasks of speech and language processing (SLP), including speech recognition, speech synthesis, document classification and question answering. This growing impact corroborates the neurobiological evidence concerning the presence of layer-wise deep processing in the human brain. On the other hand, sparse coding representation has also gained similar success in SLP, particularly in signal processing, demonstrating sparsity as another important neurobiological characteristic. Recently, research in these two directions is leading to increasing cross-fertlisation of ideas, thus a unified Sparse Deep or Deep Sparse learning framework warrants much attention. This paper aims to provide an overview of growing interest in this unified framework, and also outlines future research possibilities in this multi-disciplinary area. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Wang D, Zhou Q & Hussain A (2016) Deep and sparse learning in speech and language processing: An overview. In: Liu C, Hussain A, Luo B, Tan K, Zeng Y & Zhang Z (eds.) Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes in Computer Science, 10023. BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems, Beijing, China, 28.11.2016-30.11.2016. Cham, Switzerland: Springer, pp. 171-183. https://doi.org/10.1007/978-3-319-49685-6_16 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 10023 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Deep learning | en_UK |
dc.subject | Sparse coding | en_UK |
dc.subject | Speech processing | en_UK |
dc.subject | Language processing | en_UK |
dc.title | Deep and sparse learning in speech and language processing: An overview | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 3000-10-14 | en_UK |
dc.rights.embargoreason | [Wang_etal_LNCS_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/978-3-319-49685-6_16 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 171 | en_UK |
dc.citation.epage | 183 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.author.email | ahu@cs.stir.ac.uk | en_UK |
dc.citation.btitle | Advances in Brain Inspired Cognitive Systems. BICS 2016 | en_UK |
dc.citation.conferencedates | 2016-11-28 - 2016-11-30 | en_UK |
dc.citation.conferencelocation | Beijing, China | en_UK |
dc.citation.conferencename | BICS 2016: 8th International Conference on Brain-Inspired Cognitive Systems | en_UK |
dc.citation.date | 13/11/2016 | en_UK |
dc.citation.isbn | 978-3-319-49684-9 | en_UK |
dc.citation.isbn | 978-3-319-49685-6 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | Tsinghua University | en_UK |
dc.contributor.affiliation | Tsinghua University | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.scopusid | 2-s2.0-84997327500 | en_UK |
dc.identifier.wtid | 538301 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dc.date.accepted | 2016-08-10 | en_UK |
dcterms.dateAccepted | 2016-08-10 | en_UK |
dc.date.filedepositdate | 2017-11-30 | en_UK |
dc.relation.funderproject | Towards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devices | en_UK |
dc.relation.funderref | EP/M026981/1 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Wang, Dong| | en_UK |
local.rioxx.author | Zhou, Qiang| | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.project | EP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.contributor | Liu, CL| | en_UK |
local.rioxx.contributor | Hussain, A| | en_UK |
local.rioxx.contributor | Luo, B| | en_UK |
local.rioxx.contributor | Tan, KC| | en_UK |
local.rioxx.contributor | Zeng, Y| | en_UK |
local.rioxx.contributor | Zhang, Z| | en_UK |
local.rioxx.freetoreaddate | 3000-10-14 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Wang_etal_LNCS_2016.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-319-49685-6 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wang_etal_LNCS_2016.pdf | Fulltext - Published Version | 401.36 kB | Adobe PDF | Under Embargo until 3000-10-14 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.