Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26221
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Xiaodongen_UK
dc.contributor.authorOuelhadj, Djamilaen_UK
dc.contributor.authorSong, Xiangen_UK
dc.contributor.authorJones, Dylanen_UK
dc.contributor.authorWall, Grahamen_UK
dc.contributor.authorHowell, Kerry Een_UK
dc.contributor.authorIgwe, Paulen_UK
dc.contributor.authorMartin, Simonen_UK
dc.contributor.authorSong, Dongpingen_UK
dc.contributor.authorPertin, Emmanuelen_UK
dc.date.accessioned2017-11-30T00:32:51Z-
dc.date.available2017-11-30T00:32:51Z-
dc.date.issued2016-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26221-
dc.description.abstractThis paper presents a Decision Support System (DSS) for maintenance cost optimisation at an Offshore Wind Farm (OWF). The DSS is designed for use by multiple stakeholders in the OWF sector with the overall goal of informing maintenance strategy and hence reducing overall lifecycle maintenance costs at the OWF. Two optimisation models underpin the DSS. The first is a deterministic model that is intended for use by stakeholders with access to accurate failure rate data. The second is a stochastic model that is intended for use by stakeholders who have less certainty about failure rates. Solutions of both models are presented using a UK OWF that is in construction as an example. Conclusions as to the value of failure rate data are drawn by comparing the results of the two models. Sensitivity analysis is undertaken with respect to the turbine failure rate frequency and number of turbines at the site, with near linear trends observed for both factors. Finally, overall conclusions are drawn in the context of maintenance planning in the OWF sector.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationLi X, Ouelhadj D, Song X, Jones D, Wall G, Howell KE, Igwe P, Martin S, Song D & Pertin E (2016) A decision support system for strategic maintenance planning in offshore wind farms. Renewable Energy, 99, pp. 784-799. https://doi.org/10.1016/j.renene.2016.07.037en_UK
dc.rightsAccepted refereed manuscript of: Li X, Ouelhadj D, Song X, Jones D, Wall G, Howell KE, Igwe P, Martin S, Song D & Pertin E (2016) A decision support system for strategic maintenance planning in offshore wind farms, Renewable Energy, 99, pp. 784-799. DOI: 10.1016/j.renene.2016.07.037 © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectOffshore winden_UK
dc.subjectRenewable energyen_UK
dc.subjectOperations and maintenance (O&M)en_UK
dc.subjectDecision supporten_UK
dc.subjectStochastic optimisationen_UK
dc.titleA decision support system for strategic maintenance planning in offshore wind farmsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.renene.2016.07.037en_UK
dc.citation.jtitleRenewable Energyen_UK
dc.citation.issn0960-1481en_UK
dc.citation.volume99en_UK
dc.citation.spage784en_UK
dc.citation.epage799en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.date31/07/2016en_UK
dc.contributor.affiliationUniversity of Portsmouthen_UK
dc.contributor.affiliationUniversity of Portsmouthen_UK
dc.contributor.affiliationUniversity of Portsmouthen_UK
dc.contributor.affiliationUniversity of Portsmouthen_UK
dc.contributor.affiliationUniversity of Portsmouthen_UK
dc.contributor.affiliationUniversity of Plymouthen_UK
dc.contributor.affiliationUniversity of Plymouthen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Liverpoolen_UK
dc.contributor.affiliationUniversity of Le Havreen_UK
dc.identifier.isiWOS:000383811000077en_UK
dc.identifier.scopusid2-s2.0-84979901422en_UK
dc.identifier.wtid551378en_UK
dc.date.accepted2016-07-16en_UK
dcterms.dateAccepted2016-07-16en_UK
dc.date.filedepositdate2017-11-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorLi, Xiaodong|en_UK
local.rioxx.authorOuelhadj, Djamila|en_UK
local.rioxx.authorSong, Xiang|en_UK
local.rioxx.authorJones, Dylan|en_UK
local.rioxx.authorWall, Graham|en_UK
local.rioxx.authorHowell, Kerry E|en_UK
local.rioxx.authorIgwe, Paul|en_UK
local.rioxx.authorMartin, Simon|en_UK
local.rioxx.authorSong, Dongping|en_UK
local.rioxx.authorPertin, Emmanuel|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-11-29en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2017-11-29|en_UK
local.rioxx.filenameRenewable Energy Final paper-12-7-16.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0960-1481en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Renewable Energy Final paper-12-7-16.pdfFulltext - Accepted Version1.22 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.