Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26216
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmin, Adnanen_UK
dc.contributor.authorAnwar, Sajiden_UK
dc.contributor.authorAdnan, Awaisen_UK
dc.contributor.authorNawaz, Muhammaden_UK
dc.contributor.authorAlawfi, Khaliden_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorHuang, Kaizhuen_UK
dc.date.accessioned2017-11-30T00:16:40Z-
dc.date.available2017-11-30T00:16:40Z-
dc.date.issued2017-05-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26216-
dc.description.abstractCustomer churn is a critical and challenging problem affecting business and industry, in particular, the rapidly growing, highly competitive telecommunication sector. It is of substantial interest to both academic researchers and industrial practitioners, interested in forecasting the behavior of customers in order to differentiate the churn from non-churn customers. The primary motivation is the dire need of businesses to retain existing customers, coupled with the high cost associated with acquiring new ones. A review of the field has revealed a lack of efficient, rule-based Customer Churn Prediction (CCP) approaches in the telecommunication sector. This study proposes an intelligent rule-based decision-making technique, based on rough set theory (RST), to extract important decision rules related to customer churn and non-churn. The proposed approach effectively performs classification of churn from non-churn customers, along with prediction of those customers who will churn or may possibly churn in the near future. Extensive simulation experiments are carried out to evaluate the performance of our proposed RST based CCP approach using four rule-generation mechanisms, namely, the Exhaustive Algorithm (EA), Genetic Algorithm (GA), Covering Algorithm (CA) and the LEM2 algorithm (LA). Empirical results show that RST based on GA is the most efficient technique for extracting implicit knowledge in the form of decision rules from the publicly available, benchmark telecom dataset. Further, comparative results demonstrate that our proposed approach offers a globally optimal solution for CCP in the telecom sector, when benchmarked against several state-of-the-art methods. Finally, we show how attribute-level analysis can pave the way for developing a successful customer retention policy that could form an indispensable part of strategic decision making and planning process in the telecom sector.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationAmin A, Anwar S, Adnan A, Nawaz M, Alawfi K, Hussain A & Huang K (2017) Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing, 237, pp. 242-254. https://doi.org/10.1016/j.neucom.2016.12.009en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectClassificationen_UK
dc.subjectChurn predictionen_UK
dc.subjectData miningen_UK
dc.subjectFeature selectionen_UK
dc.subjectRough Set theoryen_UK
dc.titleCustomer churn prediction in the telecommunication sector using a rough set approachen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-08en_UK
dc.rights.embargoreason[1-s2.0-S0925231216314849-main.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.neucom.2016.12.009en_UK
dc.citation.jtitleNeurocomputingen_UK
dc.citation.issn0925-2312en_UK
dc.citation.volume237en_UK
dc.citation.spage242en_UK
dc.citation.epage254en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date07/12/2016en_UK
dc.contributor.affiliationInstitute of Management Sciencesen_UK
dc.contributor.affiliationInstitute of Management Sciencesen_UK
dc.contributor.affiliationInstitute of Management Sciencesen_UK
dc.contributor.affiliationInstitute of Management Sciencesen_UK
dc.contributor.affiliationTaibah Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationXi’an Jiaotong Universityen_UK
dc.identifier.isiWOS:000397356700022en_UK
dc.identifier.scopusid2-s2.0-85013466990en_UK
dc.identifier.wtid533153en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-12-03en_UK
dcterms.dateAccepted2016-12-03en_UK
dc.date.filedepositdate2017-11-29en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAmin, Adnan|en_UK
local.rioxx.authorAnwar, Sajid|en_UK
local.rioxx.authorAdnan, Awais|en_UK
local.rioxx.authorNawaz, Muhammad|en_UK
local.rioxx.authorAlawfi, Khalid|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorHuang, Kaizhu|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2999-12-08en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename1-s2.0-S0925231216314849-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0925-2312en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0925231216314849-main.pdfFulltext - Published Version1.11 MBAdobe PDFUnder Embargo until 2999-12-08    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.