Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/26105
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Henry, Roslyn C | en_UK |
dc.contributor.author | Palmer, Stephen C F | en_UK |
dc.contributor.author | Watts, Kevin | en_UK |
dc.contributor.author | Mitchell, Ruth | en_UK |
dc.contributor.author | Atkinson, Nick | en_UK |
dc.contributor.author | Travis, Justin M J | en_UK |
dc.date.accessioned | 2018-01-19T00:16:05Z | - |
dc.date.available | 2018-01-19T00:16:05Z | - |
dc.date.issued | 2017-11 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/26105 | - |
dc.description.abstract | Trees along linear features are important landscape features, and their loss threatens ecological connectivity. Until recently, trees outside of woodlands (TOWs) were largely unmapped however; the development of innovation mapping techniques provides opportunities to understand the distribution of such trees and to apply spatially explicit models to explore the importance of trees for connectivity. In this study, we demonstrate the utility of models when investigating tree loss and impacts on connectivity. Specifically, we investigated the consequences of tree loss due to the removal of roadside trees, a common management response for diseased or damaged trees, on wider landscape functional connectivity. We simulated the loss of roadside trees within six focal areas of the south east of the UK. We used a spatially explicit individual-based modelling platform, RangeShifter, to model the movement of 81 hypothetical actively dispersing woodland breeding species across these agriculturally fragmented landscapes. We investigated the extent to which removal of trees, from roadsides within the wider landscape, affected the total number of successful dispersers in any given year and the number of breeding woodlands that became isolated through time. On average roadside trees accounted for <2% of land cover, but removing 60% of them (~1.2% of land cover) nevertheless decreased the number of successful dispersers by up to 17%. The impact was greatest when roadside trees represented a greater proportion of canopy cover. The study therefore demonstrates that models such as RangeShifter can provide valuable tools for assessing the consequences of losing trees outside of woodlands. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier | en_UK |
dc.relation | Henry RC, Palmer SCF, Watts K, Mitchell R, Atkinson N & Travis JMJ (2017) Tree loss impacts on ecological connectivity: Developing models for assessment. Ecological Informatics, 42, pp. 90-99. https://doi.org/10.1016/j.ecoinf.2017.10.010 | en_UK |
dc.rights | © 2017 The Authors. Published by Elsevier B.V. Under a Creative Commons license (CC BY) https://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | Connectivity | en_UK |
dc.subject | Tree disease | en_UK |
dc.subject | Tree mortality | en_UK |
dc.subject | Modelling | en_UK |
dc.subject | RangeShifter | en_UK |
dc.subject | Scattered trees | en_UK |
dc.subject | Corridors | en_UK |
dc.title | Tree loss impacts on ecological connectivity: Developing models for assessment | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1016/j.ecoinf.2017.10.010 | en_UK |
dc.citation.jtitle | Ecological Informatics | en_UK |
dc.citation.issn | 1574-9541 | en_UK |
dc.citation.volume | 42 | en_UK |
dc.citation.spage | 90 | en_UK |
dc.citation.epage | 99 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.citation.date | 19/10/2017 | en_UK |
dc.contributor.affiliation | University of Edinburgh | en_UK |
dc.contributor.affiliation | University of Aberdeen | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | The James Hutton Institute | en_UK |
dc.contributor.affiliation | The Woodland Trust | en_UK |
dc.contributor.affiliation | University of Aberdeen | en_UK |
dc.identifier.isi | WOS:000418985600011 | en_UK |
dc.identifier.scopusid | 2-s2.0-85032010923 | en_UK |
dc.identifier.wtid | 512519 | en_UK |
dc.date.accepted | 2017-10-18 | en_UK |
dcterms.dateAccepted | 2017-10-18 | en_UK |
dc.date.filedepositdate | 2017-11-08 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Henry, Roslyn C| | en_UK |
local.rioxx.author | Palmer, Stephen C F| | en_UK |
local.rioxx.author | Watts, Kevin| | en_UK |
local.rioxx.author | Mitchell, Ruth| | en_UK |
local.rioxx.author | Atkinson, Nick| | en_UK |
local.rioxx.author | Travis, Justin M J| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2017-11-08 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2017-11-08| | en_UK |
local.rioxx.filename | 1-s2.0-S157495411730211X-main.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1574-9541 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S157495411730211X-main.pdf | Fulltext - Published Version | 1.14 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.