Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26009
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Phase changes in neuronal postsynaptic spiking due to short term plasticity
Author(s): McDonnell, Mark D
Graham, Bruce
Issue Date: 22-Sep-2017
Date Deposited: 19-Oct-2017
Citation: McDonnell MD & Graham B (2017) Phase changes in neuronal postsynaptic spiking due to short term plasticity. PLoS Computational Biology, 13 (9), Art. No.: e1005634. https://doi.org/10.1371/journal.pcbi.1005634
Abstract: In the brain, the postsynaptic response of a neuron to time-varying inputs is determined by the interaction of presynaptic spike times with the short-term dynamics of each synapse. For a neuron driven by stochastic synapses, synaptic depression results in a quite different postsynaptic response to a large population input depending on how correlated in time the spikes across individual synapses are. Here we show using both simulations and mathematical analysis that not only the rate but the phase of the postsynaptic response to a rhythmic population input varies as a function of synaptic dynamics and synaptic configuration. Resultant phase leads may compensate for transmission delays and be predictive of rhythmic changes. This could be particularly important for sensory processing and motor rhythm generation in the nervous system. © 2017 McDonnell, Graham.
DOI Link: 10.1371/journal.pcbi.1005634
Rights: © 2017 McDonnell, Graham. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
journal.pcbi.1005634.pdfFulltext - Published Version5.89 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.