Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTulloch, Ayesha I Ten_UK
dc.contributor.authorNicol, Samen_UK
dc.contributor.authorBunnefeld, Nilsen_UK
dc.date.accessioned2017-10-27T23:40:16Z-
dc.date.available2017-10-27T23:40:16Z-
dc.date.issued2017-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25892-
dc.description.abstractIn many parts of the world, conservation successes or global anthropogenic changes have led to increasing native species populations that then compete with human resource use. In the Orkney Islands, Scotland, a 60-fold increase in Greylag Goose Anser anser numbers over 24 years has led to agricultural damages and culling attempts that have failed to prevent population increase. To address uncertainty about why populations have increased, we combined empirical modelling of possible drivers of Greylag Goose population change with expert-elicited benefits of alternative management actions to identify whether to learn versus act immediately to reduce damages by geese. We built linear mixed-effects models relating annual goose densities on farms to land-use and environmental covariates and estimated AICc model weights to indicate relative support for six hypotheses of change. We elicited from experts the expected likelihood that one of six actions would achieve an objective of halting goose population growth, given each hypothesis for population change. Model weights and expected effects of actions were combined in Value of Information analysis (VoI) to quantify the utility of resolving uncertainty in each hypothesis through adaptive management and monitoring. The action with the highest expected value under existing uncertainty was to increase the extent of low quality habitats, whereas assuming equal hypothesis weights changed the best action to culling. VoI analysis showed that the value of learning to resolve uncertainty in any individual hypothesis for goose population change was low, due to high support for a single hypothesis of change. Our study demonstrates a two-step framework that learns about the most likely drivers of change for an over-abundant species, and uses this knowledge to weight the utility of alternative management actions. Our approach helps inform which strategies might best be implemented to resolve uncertainty when there are competing hypotheses for change and competing management choices.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationTulloch AIT, Nicol S & Bunnefeld N (2017) Quantifying the expected value of uncertain management choices for over-abundant Greylag Geese. Biological Conservation, 214, pp. 147-155. https://doi.org/10.1016/j.biocon.2017.08.013en_UK
dc.rights© 2017, The Authors. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectHuman-wildlife conflicten_UK
dc.subjectValue of informationen_UK
dc.subjectAdaptive managementen_UK
dc.subjectUncertaintyen_UK
dc.subjectOver-abundant native speciesen_UK
dc.subjectExpected utilityen_UK
dc.subjectExpected value of partial informationen_UK
dc.subjectGreylag Geese Anser anseren_UK
dc.titleQuantifying the expected value of uncertain management choices for over-abundant Greylag Geeseen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.biocon.2017.08.013en_UK
dc.citation.jtitleBiological Conservationen_UK
dc.citation.issn0006-3207en_UK
dc.citation.volume214en_UK
dc.citation.spage147en_UK
dc.citation.epage155en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailnils.bunnefeld@stir.ac.uken_UK
dc.citation.date17/08/2017en_UK
dc.contributor.affiliationUniversity of Queenslanden_UK
dc.contributor.affiliationCSIRO Health and Biosecurityen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.isiWOS:000412788100016en_UK
dc.identifier.scopusid2-s2.0-85027522413en_UK
dc.identifier.wtid519541en_UK
dc.contributor.orcid0000-0002-1349-4463en_UK
dc.date.accepted2017-08-08en_UK
dcterms.dateAccepted2017-08-08en_UK
dc.date.filedepositdate2017-09-20en_UK
dc.relation.funderprojectConFooBioen_UK
dc.relation.funderref679651en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorTulloch, Ayesha I T|en_UK
local.rioxx.authorNicol, Sam|en_UK
local.rioxx.authorBunnefeld, Nils|0000-0002-1349-4463en_UK
local.rioxx.project679651|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2017-09-20en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2017-09-20|en_UK
local.rioxx.filename1-s2.0-S0006320717309412-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0006-3207en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0006320717309412-main.pdfFulltext - Published Version623.38 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.