Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerrmann, Sebastianen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorRothlauf, Franzen_UK
dc.contributor.editorFriedrich, Ten_UK
dc.date.accessioned2017-07-14T22:21:06Z-
dc.date.available2017-07-14T22:21:06Z-
dc.date.issued2016-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25618-
dc.description.abstractWe conduct an analysis of local optima networks extracted from fitness landscapes of the Kauffman NK model under iterated local search. Applying the Markov Cluster Algorithm for community detection to the local optima networks, we find that the landscapes consist of multiple clusters. This result complements recent findings in the literature that landscapes often decompose into multiple funnels, which increases their difficulty for iterated local search. Our results suggest that the number of clusters as well as the size of the cluster in which the global optimum is located are correlated to the search difficulty of landscapes. We conclude that clusters found by community detection in local optima networks offer a new way to characterize the multi-funnel structure of fitness landscapes.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationHerrmann S, Ochoa G & Rothlauf F (2016) Communities of Local Optima as Funnels in Fitness Landscapes. In: Friedrich T (ed.) Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016. GECCO 16: Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20.07.2016-24.07.2016. New York: ACM, pp. 325-331. https://doi.org/10.1145/2908812.2908818en_UK
dc.rightsCopyright 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.en_UK
dc.titleCommunities of Local Optima as Funnels in Fitness Landscapesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1145/2908812.2908818en_UK
dc.citation.spage325en_UK
dc.citation.epage331en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailgoc@cs.stir.ac.uken_UK
dc.citation.btitleProceedings of the 2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016en_UK
dc.citation.conferencedates2016-07-20 - 2016-07-24en_UK
dc.citation.conferencelocationDenver, CO, USAen_UK
dc.citation.conferencenameGECCO 16: Genetic and Evolutionary Computation Conference 2016en_UK
dc.citation.date31/07/2016en_UK
dc.citation.isbn978-1-4503-4206-3en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationJohannes Gutenberg University of Mainzen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationJohannes Gutenberg University of Mainzen_UK
dc.identifier.isiWOS:000382659200043en_UK
dc.identifier.scopusid2-s2.0-84985993391en_UK
dc.identifier.wtid552178en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2016-06-30en_UK
dcterms.dateAccepted2016-06-30en_UK
dc.date.filedepositdate2017-07-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorHerrmann, Sebastian|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorRothlauf, Franz|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorFriedrich, T|en_UK
local.rioxx.freetoreaddate2017-07-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2017-07-14|en_UK
local.rioxx.filenameHerrmannOR_FunnelsNK_GECCO16.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4503-4206-3en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
HerrmannOR_FunnelsNK_GECCO16.pdfFulltext - Accepted Version1.56 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.