Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25528
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerrmann, Sebastianen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorRothlauf, Franzen_UK
dc.date.accessioned2017-06-23T23:47:47Z-
dc.date.available2017-06-23T23:47:47Z-
dc.date.issued2018-06-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25528-
dc.description.abstractA local optima network (LON) compresses relevant features of fitness landscapes in a complex network, where nodes are local optima and edges represent transition probabilities between different basins of attraction. Previous work has found that the PageRank centrality of local optima can be used to predict the success rate and average fitness achieved by local search based metaheuristics. Results are available for LONs where edges describe either basin transition probabilities or escape edges. This paper studies the interplay between the type of LON edges and the ability of the PageRank centrality for the resulting LON to predict the performance of local search based metaheuristics. It finds that LONs are stochastic models of the search heuristic. Thus, to achieve an accurate prediction, the definition of the LON edges must properly reflect the type of diversification steps used in the metaheuristic. LONs with edges representing basin transition probabilities capture well the diversification mechanism of simulated annealing which sometimes also accepts worse solutions that allow the search process to pass between basins. In contrast, LONs with escape edges capture well the diversification step of iterated local search, which escapes from local optima by applying a larger perturbation step.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationHerrmann S, Ochoa G & Rothlauf F (2018) PageRank centrality for performance prediction: the impact of the local optima network model. Journal of Heuristics, 24 (3), pp. 243-264. https://doi.org/10.1007/s10732-017-9333-1en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. The final publication is available at Springer via http://dx.doi.org/10.1007/s10732-017-9333-1en_UK
dc.subjectFitness landscape analysisen_UK
dc.subjectSearch difficultyen_UK
dc.subjectPageRank centralityen_UK
dc.subjectLocal optima networksen_UK
dc.subjectNK landscapesen_UK
dc.titlePageRank centrality for performance prediction: the impact of the local optima network modelen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2019-06-02en_UK
dc.rights.embargoreason[pagerank_joh2017.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1007/s10732-017-9333-1en_UK
dc.citation.jtitleJournal of Heuristicsen_UK
dc.citation.issn1572-9397en_UK
dc.citation.issn1381-1231en_UK
dc.citation.volume24en_UK
dc.citation.issue3en_UK
dc.citation.spage243en_UK
dc.citation.epage264en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderThe Leverhulme Trusten_UK
dc.author.emailgabriela.ochoa@cs.stir.ac.uken_UK
dc.contributor.affiliationJohannes Gutenberg University of Mainzen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationJohannes Gutenberg University of Mainzen_UK
dc.identifier.scopusid2-s2.0-85019248453en_UK
dc.identifier.wtid526070en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2017-05-03en_UK
dcterms.dateAccepted2017-05-03en_UK
dc.date.filedepositdate2017-06-23en_UK
dc.relation.funderprojectThe Cartography of Computational Search Spacesen_UK
dc.relation.funderrefRPG-2015-395en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorHerrmann, Sebastian|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorRothlauf, Franz|en_UK
local.rioxx.projectRPG-2015-395|The Leverhulme Trust|en_UK
local.rioxx.freetoreaddate2019-06-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-06-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-06-02|en_UK
local.rioxx.filenamepagerank_joh2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1381-1231en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
pagerank_joh2017.pdfFulltext - Accepted Version13.8 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.