Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25527
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Feien_UK
dc.contributor.authorHuang, Tengen_UK
dc.contributor.authorWang, Junen_UK
dc.contributor.authorSun, Jinpingen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorYang, Erfuen_UK
dc.date.accessioned2017-08-08T00:03:47Z-
dc.date.available2017-08-08T00:03:47Z-
dc.date.issued2017-04-27en_UK
dc.identifier.other447en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25527-
dc.description.abstractThe deep convolution neural network (CNN), which has prominent advantages in feature learning, can learn and extract features from data automatically. Existing polarimetric synthetic aperture radar (PolSAR) image classification methods based on the CNN only consider the polarization information of the image, instead of incorporating the image’s spatial information. In this paper, a novel method based on a dual-branch deep convolution neural network (Dual-CNN) is proposed to realize the classification of PolSAR images. The proposed method is built on two deep CNNs: one is used to extract the polarization features from the 6-channel real matrix (6Ch) which is derived from the complex coherency matrix. The other is utilized to extract the spatial features of a Pauli RGB (Red Green Blue) image. These extracted features are first combined into a fully connected layer sharing the polarization and spatial property. Then, the Softmax classifier is employed to classify these features. The experiments are conducted on the Airborne Synthetic Aperture Radar (AIRSAR) data of Flevoland and the results show that the classification accuracy on 14 types of land cover is up to 98.56%. Such results are promising in comparison with other state-of-the-art methods.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationGao F, Huang T, Wang J, Sun J, Hussain A & Yang E (2017) Dual-branch deep convolution neural network for polarimetric SAR image classification. Applied Sciences, 7 (5), Art. No.: 447. https://doi.org/10.3390/app7050447en_UK
dc.rights© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectpolarimetric SAR imagesen_UK
dc.subjectdeep convolution neural networken_UK
dc.subjectdual-branch convolution neural networken_UK
dc.subjectland cover classificationen_UK
dc.titleDual-branch deep convolution neural network for polarimetric SAR image classificationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/app7050447en_UK
dc.citation.jtitleApplied Sciencesen_UK
dc.citation.issn2076-3417en_UK
dc.citation.volume7en_UK
dc.citation.issue5en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date27/04/2017en_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.isiWOS:000404449000015en_UK
dc.identifier.scopusid2-s2.0-85019103161en_UK
dc.identifier.wtid526085en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2017-04-24en_UK
dcterms.dateAccepted2017-04-24en_UK
dc.date.filedepositdate2017-06-23en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGao, Fei|en_UK
local.rioxx.authorHuang, Teng|en_UK
local.rioxx.authorWang, Jun|en_UK
local.rioxx.authorSun, Jinping|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorYang, Erfu|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-06-23en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-06-23|en_UK
local.rioxx.filenameapplsci-07-00447.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
applsci-07-00447.pdfFulltext - Published Version3.65 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.