Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25445
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Feien_UK
dc.contributor.authorMa, Feien_UK
dc.contributor.authorZhang, Yaotianen_UK
dc.contributor.authorWang, Junen_UK
dc.contributor.authorSun, Jinpingen_UK
dc.contributor.authorYang, Erfuen_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2017-05-31T23:29:19Z-
dc.date.available2017-05-31T23:29:19Z-
dc.date.issued2016-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25445-
dc.description.abstractHigh-resolution synthetic aperture radar (SAR) can provide a rich information source for target detection and greatly increase the types and number of target characteristics. How to efficiently extract the target of interest from large amounts of SAR images is the main research issue. Inspired by the biological visual systems, researchers have put forward a variety of biologically inspired visual models for target detection, such as classical saliency map and HMAX. But these methods only model the retina or visual cortex in the visual system, which limit their ability to extract and integrate targets characteristics; thus, their detection accuracy and efficiency can be easily disturbed in complex environment. Based on the analysis of retina and visual cortex in biological visual systems, a progressive enhancement detection method for SAR targets is proposed in this paper. The detection process is divided into RET, PVC, and AVC three stages which simulate the information processing chain of retina, primary and advanced visual cortex, respectively. RET stage is responsible for eliminating the redundant information of input SAR image, enhancing inputs’ features, and transforming them to excitation signals. PVC stage obtains primary features through the competition mechanism between the neurons and the combination of characteristics, and then completes the rough detection. In the AVC stage, the neurons with more receptive field compound more precise advanced features, completing the final fine detection. The experimental results obtained in this study show that the proposed approach has better detection results in comparison with the traditional methods in complex scenes.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationGao F, Ma F, Zhang Y, Wang J, Sun J, Yang E & Hussain A (2016) Biologically Inspired Progressive Enhancement Target Detection from Heavy Cluttered SAR Images. Cognitive Computation, 8 (5), pp. 955-966. https://doi.org/10.1007/s12559-016-9405-9en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectCortex-like mechanismsen_UK
dc.subjectSynthetic aperture radar (SAR)en_UK
dc.subjectHierarchical modelsen_UK
dc.subjectTarget detectionen_UK
dc.titleBiologically Inspired Progressive Enhancement Target Detection from Heavy Cluttered SAR Imagesen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-10en_UK
dc.rights.embargoreason[Gao_etal_CognComput_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/s12559-016-9405-9en_UK
dc.citation.jtitleCognitive Computationen_UK
dc.citation.issn1866-9964en_UK
dc.citation.issn1866-9956en_UK
dc.citation.volume8en_UK
dc.citation.issue5en_UK
dc.citation.spage955en_UK
dc.citation.epage966en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date09/04/2016en_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000386351500016en_UK
dc.identifier.scopusid2-s2.0-84964091577en_UK
dc.identifier.wtid543043en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-03-29en_UK
dcterms.dateAccepted2016-03-29en_UK
dc.date.filedepositdate2017-05-31en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGao, Fei|en_UK
local.rioxx.authorMa, Fei|en_UK
local.rioxx.authorZhang, Yaotian|en_UK
local.rioxx.authorWang, Jun|en_UK
local.rioxx.authorSun, Jinping|en_UK
local.rioxx.authorYang, Erfu|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2999-12-10en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameGao_etal_CognComput_2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1866-9956en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Gao_etal_CognComput_2016.pdfFulltext - Published Version2.81 MBAdobe PDFUnder Embargo until 2999-12-10    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.