Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25373
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVeerapen, Nadarajenen_UK
dc.contributor.authorDaolio, Fabioen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.date.accessioned2017-08-09T22:38:09Z-
dc.date.available2017-08-09T22:38:09Z-
dc.date.issued2017en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25373-
dc.description.abstractLocal optima networks are a compact representation of the global structure of a search space. They can be used for analysis and visualisation. This paper provides one of the first analyses of program search spaces using local optima networks. These are generated by sampling the search space by recording the progress of an Iterated Local Search algorithm. Source code mutations in comparison and Boolean operators are considered. The search spaces of two small benchmark programs, the triangle and TCAS programs, are analysed and visualised. Results show a high level of neutrality, i.e. connected test-equivalent mutants. It is also generally relatively easy to find a path from a random mutant to a mutant that passes all test cases.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationVeerapen N, Daolio F & Ochoa G (2017) Modelling Genetic Improvement Landscapes with Local Optima Networks. In: Proceedings of GECCO '17 Conference Companion. Genetic Improvement Workshop 2017, Berlin, Germany, 15.07.2017-15.07.2017. New York: ACM, pp. 1543-1548. http://dx.doi.org/10.1145/3067695.3082518; https://doi.org/10.1145/3067695.3082518en_UK
dc.relation.urihttp://geneticimprovementofsoftware.com/en_UK
dc.relation.urihttp://hdl.handle.net/11667/89en_UK
dc.rights© 2017 ACM. GECCO ’17 Companion, Berlin, Germany Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.en_UK
dc.subjectFitness landscapeen_UK
dc.subjectLocal Optima Networken_UK
dc.subjectGenetic Improvementen_UK
dc.titleModelling Genetic Improvement Landscapes with Local Optima Networksen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1145/3067695.3082518en_UK
dc.citation.spage1543en_UK
dc.citation.epage1548en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderThe Leverhulme Trusten_UK
dc.identifier.urlhttp://dx.doi.org/10.1145/3067695.3082518en_UK
dc.author.emailnve@cs.stir.ac.uken_UK
dc.citation.btitleProceedings of GECCO '17 Conference Companionen_UK
dc.citation.conferencedates2017-07-15 - 2017-07-15en_UK
dc.citation.conferencelocationBerlin, Germanyen_UK
dc.citation.conferencenameGenetic Improvement Workshop 2017en_UK
dc.citation.date31/07/2017en_UK
dc.citation.isbn978-1-4503-4939-0en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85026890434en_UK
dc.identifier.wtid529061en_UK
dc.contributor.orcid0000-0003-3699-1080en_UK
dc.contributor.orcid0000-0003-4240-4161en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2017-04-13en_UK
dcterms.dateAccepted2017-04-13en_UK
dc.date.filedepositdate2017-05-19en_UK
dc.relation.funderprojectThe Cartography of Computational Search Spacesen_UK
dc.relation.funderrefRPG-2015-395en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorVeerapen, Nadarajen|0000-0003-3699-1080en_UK
local.rioxx.authorDaolio, Fabio|0000-0003-4240-4161en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.projectRPG-2015-395|The Leverhulme Trust|en_UK
local.rioxx.freetoreaddate2017-07-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-07-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2017-07-31|en_UK
local.rioxx.filenamemodelling-genetic-improvement (7).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4503-4939-0en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
modelling-genetic-improvement (7).pdfFulltext - Accepted Version3.6 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.