Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25321
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Hsin Yen_UK
dc.contributor.authorMatika, Oswalden_UK
dc.contributor.authorEdwards, Stefan McKinnonen_UK
dc.contributor.authorAntolin-Sanchez, Robertoen_UK
dc.contributor.authorHamilton, Alastairen_UK
dc.contributor.authorGuy, Derrick Ren_UK
dc.contributor.authorTinch, Alan Een_UK
dc.contributor.authorGharbi, Karimen_UK
dc.contributor.authorStear, Michaelen_UK
dc.contributor.authorTaggart, Johnen_UK
dc.contributor.authorBron, Jamesen_UK
dc.contributor.authorHickey, John Men_UK
dc.contributor.authorHouston, Ross Den_UK
dc.date.accessioned2017-08-17T22:52:27Z-
dc.date.available2017-08-17T22:52:27Z-
dc.date.issued2017-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25321-
dc.description.abstractGenomic selection uses genome-wide marker information to predict breeding values for traits of economic interest, and is more accurate than pedigree-based methods. The development of high density SNP arrays for Atlantic salmon has enabled genomic selection in selective breeding programs, alongside high-resolution association mapping of the genetic basis of complex traits. However, in sibling testing schemes typical of salmon breeding programs, trait records are available on many thousands of fish with close relationships to the selection candidates. Therefore, routine high density SNP genotyping may be prohibitively expensive. One means to reducing genotyping cost is the use of genotype imputation, where selected key animals (e.g., breeding program parents) are genotyped at high density, and the majority of individuals (e.g., performance tested fish and selection candidates) are genotyped at much lower density, followed by imputation to high density. The main objectives of the current study were to assess the feasibility and accuracy of genotype imputation in the context of a salmon breeding program. The specific aims were: (i) to measure the accuracy of genotype imputation using medium (25 K) and high (78 K) density mapped SNP panels, by masking varying proportions of the genotypes and assessing the correlation between the imputed genotypes and the true genotypes; and (ii) to assess the efficacy of imputed genotype data in genomic prediction of key performance traits (sea lice resistance and body weight). Imputation accuracies of up to 0.90 were observed using the simple two-generation pedigree dataset, and moderately high accuracy (0.83) was possible even with very low density SNP data (∼250SNPs). The performance of genomic prediction using imputed genotype data was comparable to using true genotype data, and both were superior to pedigree-based prediction. These results demonstrate that the genotype imputation approach used in this study can provide a cost-effective method for generating robust genome-wide SNP data for genomic prediction in Atlantic salmon. Genotype imputation approaches are likely to form a critical component of cost-efficient genomic selection programs to improve economically important traits in aquaculture.en_UK
dc.language.isoenen_UK
dc.publisherGenetics Society of Americaen_UK
dc.relationTsai HY, Matika O, Edwards SM, Antolin-Sanchez R, Hamilton A, Guy DR, Tinch AE, Gharbi K, Stear M, Taggart J, Bron J, Hickey JM & Houston RD (2017) Genotype imputation to improve the cost-efficiency of genomic selection in farmed Atlantic salmon. G3: Genes Genomes Genetics, 7 (4), pp. 1377-1383. https://doi.org/10.1534/g3.117.040717en_UK
dc.rightsCopyright © 2017 Tsai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectaquacultureen_UK
dc.subjectdisease resistanceen_UK
dc.subjectGenomic selectionen_UK
dc.subjectimputationen_UK
dc.subjectGenPreden_UK
dc.subjectShared Data Resourcesen_UK
dc.titleGenotype imputation to improve the cost-efficiency of genomic selection in farmed Atlantic salmonen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1534/g3.117.040717en_UK
dc.identifier.pmid28250015en_UK
dc.citation.jtitleG3: Genes Genomes Geneticsen_UK
dc.citation.issn2160-1836en_UK
dc.citation.volume7en_UK
dc.citation.issue4en_UK
dc.citation.spage1377en_UK
dc.citation.epage1383en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date03/04/2017en_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationHendrix Genetics BVen_UK
dc.contributor.affiliationHendrix Genetics BVen_UK
dc.contributor.affiliationHendrix Genetics BVen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.identifier.isiWOS:000398840700030en_UK
dc.identifier.scopusid2-s2.0-85017253828en_UK
dc.identifier.wtid530532en_UK
dc.contributor.orcid0000-0002-3843-9663en_UK
dc.contributor.orcid0000-0003-3544-0519en_UK
dc.date.accepted2017-02-22en_UK
dcterms.dateAccepted2017-02-22en_UK
dc.date.filedepositdate2017-05-08en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorTsai, Hsin Y|en_UK
local.rioxx.authorMatika, Oswald|en_UK
local.rioxx.authorEdwards, Stefan McKinnon|en_UK
local.rioxx.authorAntolin-Sanchez, Roberto|en_UK
local.rioxx.authorHamilton, Alastair|en_UK
local.rioxx.authorGuy, Derrick R|en_UK
local.rioxx.authorTinch, Alan E|en_UK
local.rioxx.authorGharbi, Karim|en_UK
local.rioxx.authorStear, Michael|en_UK
local.rioxx.authorTaggart, John|0000-0002-3843-9663en_UK
local.rioxx.authorBron, James|0000-0003-3544-0519en_UK
local.rioxx.authorHickey, John M|en_UK
local.rioxx.authorHouston, Ross D|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-05-08en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-05-08|en_UK
local.rioxx.filename1377.full.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2160-1836en_UK
Appears in Collections:Aquaculture Journal Articles

Files in This Item:
File Description SizeFormat 
1377.full.pdfFulltext - Published Version1.04 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.