Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUllah, Amjaden_UK
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorShen, Yindongen_UK
dc.date.accessioned2018-02-06T00:16:50Z-
dc.date.available2018-02-06T00:16:50Z-
dc.date.issued2017-02-13en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25309-
dc.description.abstractThe successful usage of fuzzy systems can be seen in many application domains owing to their capabilities to model complex systems by exploiting knowledge of domain experts. Their accuracy and performance are, however, primarily dependent on the design of its membership functions and control rules. The commonly employed technique to design membership functions is to exploit the knowledge of domain experts. However, in certain application domains, the knowledge of domain experts are limited and therefore, cannot be relied upon. Alternatively, optimization techniques such as genetic algorithms are utilized to optimize the various design parameters of fuzzy systems. In this paper, we report a case study of optimizing the membership functions of a fuzzy system using genetic algorithm, which is an important part of our recently developed cloud elasticity framework. This work aims to improve the overall performance of the framework. Results obtained from this research work demonstrate performance improvement in comparison with our previous experimental settings.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationUllah A, Li J, Hussain A & Shen Y (2017) Genetic optimization of fuzzy membership functions for cloud resource provisioning. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 06.12.2016-09.12.2016. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/SSCI.2016.7850088en_UK
dc.rights© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksen_UK
dc.titleGenetic optimization of fuzzy membership functions for cloud resource provisioningen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/SSCI.2016.7850088en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.citation.btitle2016 IEEE Symposium Series on Computational Intelligence (SSCI)en_UK
dc.citation.conferencedates2016-12-06 - 2016-12-09en_UK
dc.citation.conferencelocationAthens, Greeceen_UK
dc.citation.conferencename2016 IEEE Symposium Series on Computational Intelligence (SSCI)en_UK
dc.citation.date13/02/2017en_UK
dc.citation.isbn978-1-5090-4241-8en_UK
dc.citation.isbn978-1-5090-4240-1en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationHuazhong University of Science and Technologyen_UK
dc.identifier.isiWOS:000400488301129en_UK
dc.identifier.scopusid2-s2.0-85016025260en_UK
dc.identifier.wtid532085en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-09-28en_UK
dcterms.dateAccepted2016-09-28en_UK
dc.date.filedepositdate2017-05-04en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorUllah, Amjad|en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorShen, Yindong|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2017-05-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2017-05-05|en_UK
local.rioxx.filenamega_fuzzy.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-5090-4240-1en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
ga_fuzzy.pdfFulltext - Accepted Version312.43 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.