Please use this identifier to cite or link to this item:
Appears in Collections:Computing Science and Mathematics eTheses
Title: Using mathematical models to understand the impact of climate change on tick-borne infections across Scotland
Author(s): Worton, Adrian J
Supervisor(s): Norman, Rachel
Gilbert, Lucy
Keywords: Ixodes ricinus
Tick-borne disease
Lyme disease
GIS mapping
Mathematical modelling
Mathematical biology
Issue Date: 28-Nov-2016
Publisher: University of Stirling
Citation: R. A. Norman, A. J. Worton, and L. Gilbert. Past and future perspectives on mathematical models of tick-borne pathogens. Parasitology, pages 1–10, 2015
Abstract: Ticks are of global interest as the pathogens they spread can cause diseases that are of importance to both human health and economies. In Scotland, the most populous tick species is the sheep tick Ixodes ricinus, which is the vector of pathogens causing diseases such as Lyme borreliosis and Louping-ill. Recently, both the density and spread of I. ricinus ticks have grown across much of Europe, including Scotland, increasing disease risk. Due to the nature of the tick lifecycle they are particularly dependent on environmental factors, including temperature and habitat type. Because of this, the recent increase in tick-borne disease risk is believed to be linked to climate change. Many mathematical models have been used to explore the interactions between ticks and factors within their environments; this thesis begins by presenting a thorough review of previous modelling of tick and tick-borne pathogen dynamics, identifying current knowledge gaps. The main body of this thesis introduces an original mathematical modelling framework with the aim to further our understanding of the impact of climate change on tick-borne disease risk. This modelling framework takes into account how key environmental factors influence the I. ricinus lifecycle, and is used to create predictions of how I. ricinus density and disease risk will change across Scotland under future climate warming scenarios. These predictions are mapped using Geographical Information System software to give a clear spatial representation of the model predictions. It was found that as temperatures increase, so to do I. ricinus densities, as well as Louping-ill and Lyme borreliosis risk. These results give a strong indication of the disease risk implications of any changes to the Scottish environment, and so have the potential to inform policy-making. Additionally, the models identify areas of possible future research.
Type: Thesis or Dissertation

Files in This Item:
File Description SizeFormat 
thesis.pdfThesis5.66 MBAdobe PDFView/Open

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.