Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24839
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEnright, Jessica Aen_UK
dc.contributor.authorO'Hare, Anthonyen_UK
dc.date.accessioned2017-04-21T02:15:39Z-
dc.date.available2017-04-21T02:15:39Z-
dc.date.issued2017-02-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24839-
dc.description.abstractDisease outbreaks are often accompanied by a wealth of data, usually in the form of movements, locations and tests. This data is a valuable resource in which data scientists and epidemiologists can reconstruct the transmission pathways and parameters and thus devise control strategies. However, the spatiotemporal data gathered can be both vast whilst at the same time incomplete or contain errors frustrating the effort to accurately model the transmission processes. Fortunately, several techniques exist that can be used to infer the relevant information to help explain these processes. The aim of this article is to provide the reader with a user friendly introduction to the techniques used in dealing with the large datasets that exists in epidemiological and ecological science and the common pitfalls that are to be avoided as well as an introduction to inference techniques for estimating parameter values for mathematical models from spatiotemporal datasets.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationEnright JA & O'Hare A (2017) Reconstructing disease transmission dynamics from animal movements and test data. Stochastic Environmental Research and Risk Assessment, 31 (2), pp. 369-377. https://doi.org/10.1007/s00477-016-1354-zen_UK
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectEpidemiologyen_UK
dc.subjectModellingen_UK
dc.subjectBayesian Inferenceen_UK
dc.subjectSimulationen_UK
dc.subjectNetworksen_UK
dc.subjectSpatio-temporalen_UK
dc.titleReconstructing disease transmission dynamics from animal movements and test dataen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s00477-016-1354-zen_UK
dc.citation.jtitleStochastic Environmental Research and Risk Assessmenten_UK
dc.citation.issn1436-3259en_UK
dc.citation.issn1436-3240en_UK
dc.citation.volume31en_UK
dc.citation.issue2en_UK
dc.citation.spage369en_UK
dc.citation.epage377en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailjae1@cs.stir.ac.uken_UK
dc.citation.date16/11/2016en_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationComplex Systems - LEGACYen_UK
dc.identifier.isiWOS:000395197800007en_UK
dc.identifier.scopusid2-s2.0-84995704514en_UK
dc.identifier.wtid541776en_UK
dc.contributor.orcid0000-0002-0266-3292en_UK
dc.contributor.orcid0000-0003-2561-9582en_UK
dc.date.accepted2016-11-16en_UK
dcterms.dateAccepted2016-11-16en_UK
dc.date.filedepositdate2017-01-26en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorEnright, Jessica A|0000-0002-0266-3292en_UK
local.rioxx.authorO'Hare, Anthony|0000-0003-2561-9582en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-01-26en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-01-26|en_UK
local.rioxx.filenameEnright_OHare_SERRA_2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1436-3259en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Enright_OHare_SERRA_2017.pdfFulltext - Published Version1.22 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.