Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24830
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback
Author(s): Jump, Alistair S
Ruiz-Benito, Paloma
Greenwood, Sarah
Allen, Craig D
Kitzberger, Thomas
Fensham, Rod
Martínez‐Vilalta, Jordi
Lloret, Francisco
Contact Email: a.s.jump@stir.ac.uk
Keywords: Climate change
forest dynamics
drought
mortality
extreme events
Issue Date: Sep-2017
Date Deposited: 25-Jan-2017
Citation: Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez‐Vilalta J & Lloret F (2017) Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23 (9), pp. 3742-3757. https://doi.org/10.1111/gcb.13636
Abstract: Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, since trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of above-ground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period, and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. Since climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus over-built during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes to forest distribution and function from regional to global scales.
DOI Link: 10.1111/gcb.13636
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is the peer reviewed version of the following article: Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., Martínez-Vilalta, J. and Lloret, F. (2017), Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob Change Biol, 23: 3742–3757, which has been published in final form at https://doi.org/10.1111/gcb.13636. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

Files in This Item:
File Description SizeFormat 
leverhulme_conceptualms_R3AAVersion.pdfFulltext - Accepted Version813.7 kBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.