Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalik, Zeeshanen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorWu, Qingming Jonathanen_UK
dc.date.accessioned2017-01-24T22:21:00Z-
dc.date.available2017-01-24T22:21:00Z-
dc.date.issued2018-07-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24820-
dc.description.abstractIn this paper, we consider the challenging problem of finding shared information in multiple data streams simultaneously. The standard statistical method for doing this is the well-known canonical correlation analysis (CCA) approach. We begin by developing an online version of the CCA and apply it to reservoirs of an echo state network in order to capture shared temporal information in two data streams. We further develop the proposed method by forcing it to ignore shared information that is created from static values using derivative information. We finally develop a novel multi-set CCA method which can identify shared information in more than two data streams simultaneously. The comparative effectiveness of the proposed methods is illustrated using artificial and real benchmark datasets.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationMalik Z, Hussain A & Wu QJ (2018) Extracting online information from dual and multiple data streams. Neural Computing and Applications, 30 (1), pp. 87-98. https://doi.org/10.1007/s00521-016-2647-3en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this work to be made available in this repository; The original publication is available at Springer via http://dx.doi.org/10.1007/s00521-016-2647-3en_UK
dc.subjectCanonical correlation analysisen_UK
dc.subjectEcho state networken_UK
dc.subjectGeneralized eigenvalue problemen_UK
dc.subjectHigh-variance feature-extractionen_UK
dc.subjectNeural networken_UK
dc.subjectUnsupervised learningen_UK
dc.titleExtracting online information from dual and multiple data streamsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2019-07-02en_UK
dc.rights.embargoreason[sfa.pdf] Until this work is formally published there will be an embargo on the full text of this work.en_UK
dc.identifier.doi10.1007/s00521-016-2647-3en_UK
dc.citation.jtitleNeural Computing and Applicationsen_UK
dc.citation.issn1433-3058en_UK
dc.citation.issn0941-0643en_UK
dc.citation.volume30en_UK
dc.citation.issue1en_UK
dc.citation.spage87en_UK
dc.citation.epage98en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.description.notesOnline publication date: 14 Nov 2016en_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Windsoren_UK
dc.identifier.isiWOS:000434834400007en_UK
dc.identifier.scopusid2-s2.0-84995527933en_UK
dc.identifier.wtid538524en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-10-24en_UK
dcterms.dateAccepted2016-10-24en_UK
dc.date.filedepositdate2017-01-24en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMalik, Zeeshan|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorWu, Qingming Jonathan|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2019-07-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-07-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-07-02|en_UK
local.rioxx.filenamesfa.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0941-0643en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
sfa.pdfFulltext - Accepted Version989.12 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.