Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24743
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaterson, Iona Ken_UK
dc.contributor.authorHoyle, Andrewen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorBaker-Austin, Craigen_UK
dc.contributor.authorTaylor, Nicholas G Hen_UK
dc.date.accessioned2016-12-23T03:30:06Z-
dc.date.available2016-12-23T03:30:06Z-
dc.date.issued2016-11en_UK
dc.identifier.other37853en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24743-
dc.description.abstractThe increase in antibiotic resistant bacteria poses a threat to the continued use of antibiotics to treat bacterial infections. The overuse and misuse of antibiotics has been identified as a significant driver in the emergence of resistance. Finding optimal treatment regimens is therefore critical in ensuring the prolonged effectiveness of these antibiotics. This study uses mathematical modelling to analyse the effect traditional treatment regimens have on the dynamics of a bacterial infection. Using a novel approach, a genetic algorithm, the study then identifies improved treatment regimens. Using a single antibiotic the genetic algorithm identifies regimens which minimise the amount of antibiotic used while maximising bacterial eradication. Although exact treatments are highly dependent on parameter values and initial bacterial load, a significant common trend is identified throughout the results. A treatment regimen consisting of a high initial dose followed by an extended tapering of doses is found to optimise the use of antibiotics. This consistently improves the success of eradicating infections, uses less antibiotic than traditional regimens and reduces the time to eradication. The use of genetic algorithms to optimise treatment regimens enables an extensive search of possible regimens, with previous regimens directing the search into regions of better performance.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Natureen_UK
dc.relationPaterson IK, Hoyle A, Ochoa G, Baker-Austin C & Taylor NGH (2016) Optimising Antibiotic Usage to Treat Bacterial Infections. Scientific Reports, 6, Art. No.: 37853. https://doi.org/10.1038/srep37853en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectApplied mathematicsen_UK
dc.subjectComputational modelsen_UK
dc.titleOptimising Antibiotic Usage to Treat Bacterial Infectionsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1038/srep37853en_UK
dc.identifier.pmid27892497en_UK
dc.citation.jtitleScientific Reportsen_UK
dc.citation.issn2045-2322en_UK
dc.citation.volume6en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailash@cs.stir.ac.uken_UK
dc.citation.date28/11/2016en_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationCEFAS - Centre for Environment, Fisheries and Aquaculture Scienceen_UK
dc.contributor.affiliationCEFAS - Centre for Environment, Fisheries and Aquaculture Scienceen_UK
dc.identifier.isiWOS:000388878900001en_UK
dc.identifier.scopusid2-s2.0-84999622259en_UK
dc.identifier.wtid541970en_UK
dc.contributor.orcid0000-0002-9117-7041en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2016-11-02en_UK
dcterms.dateAccepted2016-11-02en_UK
dc.date.filedepositdate2016-12-20en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorPaterson, Iona K|en_UK
local.rioxx.authorHoyle, Andrew|0000-0002-9117-7041en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorBaker-Austin, Craig|en_UK
local.rioxx.authorTaylor, Nicholas G H|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2016-12-20en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2016-12-20|en_UK
local.rioxx.filenamesrep37853.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2045-2322en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
srep37853.pdfFulltext - Published Version578.51 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.