Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHennig, Matthias Hen_UK
dc.contributor.authorPostlethwaite, Michaelen_UK
dc.contributor.authorForsythe, Ian Den_UK
dc.contributor.authorGraham, Bruceen_UK
dc.date.accessioned2018-02-01T11:50:48Z-
dc.date.available2018-02-01T11:50:48Z-
dc.date.issued2008-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/2462-
dc.description.abstractSustained activity at most central synapses is accompanied by a number of short-term changes in synaptic strength which act over a range of time scales. Here we examine experimental data and develop a model of synaptic depression at the calyx of Held synaptic terminal that combines many of these mechanisms (acting at differing sites and across a range of time scales). This new model incorporates vesicle recycling, facilitation, activity-dependent vesicle retrieval and multiple mechanisms affecting calcium channel activity and release probability. It can accurately reproduce the time course of experimentally measured short-term depression across different stimulus frequencies and exhibits a slow decay in EPSC amplitude during sustained stimulation. We show that the slow decay is a consequence of vesicle release inhibition by multiple mechanisms and is accompanied by a partial recovery of the releasable vesicle pool. This prediction is supported by patch-clamp data, using long duration repetitive EPSC stimulation at up to 400 Hz. The model also explains the recovery from depression in terms of interaction between these multiple processes, which together generate a stimulus-history-dependent recovery after repetitive stimulation. Given the high rates of spontaneous activity in the auditory pathway, the model also demonstrates how these multiple interactions cause chronic synaptic depression under in vivo conditions. While the magnitude of the depression converges to the same steady state for a given frequency, the time courses of onset and recovery are faster in the presence of spontaneous activity. We conclude that interactions between multiple sources of short-term plasticity can account for the complex kinetics during high frequency stimulation and cause stimulus-history-dependent recovery at this relay synapse.en_UK
dc.language.isoenen_UK
dc.publisherWiley-Blackwell / the Physiological Societyen_UK
dc.relationHennig MH, Postlethwaite M, Forsythe ID & Graham B (2008) Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held. Journal of Physiology, 586 (13), pp. 3129-3146. http://www3.interscience.wiley.com/journal/120175119/abstract; https://doi.org/10.1113/jphysiol.2008.152124en_UK
dc.rightsThis is the author's final refereed version of this article. The definitive version is available at www.blackwell-synergy.com and www.jphysiol.orgen_UK
dc.subjectcomputational neuroscienceen_UK
dc.subjectshort term synaptic dynamicsen_UK
dc.titleInteractions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Helden_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2010-10-14en_UK
dc.rights.embargoreason[Hennig_JP_preprint.pdf] The publisher requires a 12 month embargo period after the date of publicationen_UK
dc.identifier.doi10.1113/jphysiol.2008.152124en_UK
dc.citation.jtitleJournal of Physiologyen_UK
dc.citation.issn1469-7793en_UK
dc.citation.issn0022-3751en_UK
dc.citation.volume586en_UK
dc.citation.issue13en_UK
dc.citation.spage3129en_UK
dc.citation.epage3146en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www3.interscience.wiley.com/journal/120175119/abstracten_UK
dc.author.emailb.graham@cs.stir.ac.uken_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversity of Leicesteren_UK
dc.contributor.affiliationUniversity of Leicesteren_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000257675500015en_UK
dc.identifier.scopusid2-s2.0-47249097526en_UK
dc.identifier.wtid830094en_UK
dc.contributor.orcid0000-0002-3243-2532en_UK
dcterms.dateAccepted2008-07-31en_UK
dc.date.filedepositdate2010-10-14en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorHennig, Matthias H|en_UK
local.rioxx.authorPostlethwaite, Michael|en_UK
local.rioxx.authorForsythe, Ian D|en_UK
local.rioxx.authorGraham, Bruce|0000-0002-3243-2532en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2010-10-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2010-10-14|en_UK
local.rioxx.filenameHennig_JP_preprint.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0022-3751en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Hennig_JP_preprint.pdfFulltext - Accepted Version3.88 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.