Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdair, Jasonen_UK
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.editorAngelov, Pen_UK
dc.contributor.editorGegov, Aen_UK
dc.contributor.editorJayne, Cen_UK
dc.contributor.editorShen, Qen_UK
dc.date.accessioned2017-03-02T22:38:53Z-
dc.date.available2017-03-02T22:38:53Z-
dc.date.issued2016-09-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24559-
dc.description.abstractAbstract Brain Computer Interfaces are an essential technology for the advancement of prosthetic limbs, but current signal acquisition methods are hindered by a number of factors, not least, noise. In this context, Feature Selection is required to choose the important signal features and improve classifier accuracy. Evolutionary algorithms have proven to outperform filtering methods (in terms of accuracy) for Feature Selection. This paper applies a single-point heuristic search method, Iterated Local Search (ILS), and compares it to a genetic algorithm (GA) and a memetic algorithm (MA). It then further attempts to utilise Linkage between features to guide search operators in the algorithms stated. The GA was found to outperform ILS. Counter-intuitively, linkage-guided algorithms resulted in higher classification error rates than their unguided alternatives. Explanations for this are explored.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationAdair J, Brownlee A & Ochoa G (2016) Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces. In: Angelov P, Gegov A, Jayne C & Shen Q (eds.) Advances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK. Advances in Intelligent Systems and Computing, 513. UKCI 2016 - 16th UK Workshop on Computational Intelligence, Lancaster, 07.09.2016-09.09.2016. London: Springer, pp. 287-307. https://doi.org/10.1007/978-3-319-46562-3_19en_UK
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computing, 513en_UK
dc.rightsPublisher policy allows this work to be made available in this repository; The original publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46562-3_19en_UK
dc.subjectevolutionary searchen_UK
dc.subjectbrain computer interfacesen_UK
dc.subjectIterated Local Searchen_UK
dc.subjectGenetic Algorithmsen_UK
dc.subjectFeature Selectionen_UK
dc.subjectIntelligent Operatorsen_UK
dc.subjectfeature selectionen_UK
dc.subjectmemetic algorithmsen_UK
dc.subjectlinkage scoreen_UK
dc.subjectlinkage detection algorithmsen_UK
dc.subjectepistasisen_UK
dc.subjecteegen_UK
dc.subjectprostheticsen_UK
dc.titleEvolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfacesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2016-11-11en_UK
dc.identifier.doi10.1007/978-3-319-46562-3_19en_UK
dc.citation.issn2194-5357en_UK
dc.citation.spage287en_UK
dc.citation.epage307en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailsbr@cs.stir.ac.uken_UK
dc.citation.btitleAdvances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UKen_UK
dc.citation.conferencedates2016-09-07 - 2016-09-09en_UK
dc.citation.conferencelocationLancasteren_UK
dc.citation.conferencenameUKCI 2016 - 16th UK Workshop on Computational Intelligenceen_UK
dc.citation.date30/09/2016en_UK
dc.citation.isbn978-3-319-46561-6en_UK
dc.citation.isbn978-3-319-46562-3en_UK
dc.publisher.addressLondonen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000392193600019en_UK
dc.identifier.scopusid2-s2.0-84988660337en_UK
dc.identifier.wtid545054en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2016-08-01en_UK
dcterms.dateAccepted2016-08-01en_UK
dc.date.filedepositdate2016-11-11en_UK
dc.subject.tagBrain-machine interfacingen_UK
dc.subject.tagSearch Methodologiesen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAdair, Jason|en_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorAngelov, P|en_UK
local.rioxx.contributorGegov, A|en_UK
local.rioxx.contributorJayne, C|en_UK
local.rioxx.contributorShen, Q|en_UK
local.rioxx.freetoreaddate2016-11-11en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-11-11|en_UK
local.rioxx.filenameevolutionary-algorithms-linkage (1).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-46562-3en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
evolutionary-algorithms-linkage (1).pdfFulltext - Accepted Version3.48 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.