Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24489
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReid, Kenneth Neilen_UK
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorSwan, Jerryen_UK
dc.contributor.authorMcCormick, Alistairen_UK
dc.contributor.authorOwusu, Gilberten_UK
dc.date.accessioned2017-06-26T22:32:24Z-
dc.date.available2017-06-26T22:32:24Z-
dc.date.issued2016-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24489-
dc.description.abstractThis paper describes a Variable Neighbourhood Search (VNS) combined with simulated annealing to tackle a highly constrained workforce scheduling problem at British Telecommunications plc (BT). A refined greedy algorithm is firstly designed to create an initial solution which meets all hard constraints and satisfies some of the soft constraints. The VNS is then used to swap out less promising combinations, continually moving towards a more optimal solution until meeting finishing requirements. The results are promising when compared to the stand- alone greedy algorithm. We believe there is scope for this to be extended in several ways, i.e. into a more complex variation of VNS to further improve results, to be applied to further data sets and workforce scheduling problem scenarios, and to have input parameters to the algorithm selectively optimized to discover what kind of improvements in efficiency and fitness are possible. There is also scope for this to be used in similar combinatorial optimization problems.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationReid KN, Li J, Swan J, McCormick A & Owusu G (2016) Variable Neighbourhood Search: A Case Study for a Highly-Constrained Workforce Scheduling Problem. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE SSCI 2016: IEEE Symposium Series on Computational Intelligence, Athens, Greece, 06.12.2016-09.12.2016. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/SSCI.2016.7850087en_UK
dc.rightsAccepted for publication in a forthcoming proceedings to be published by IEEE. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectVariable Neighbourhood Searchen_UK
dc.subjectPersonnel Schedulingen_UK
dc.subjectEngineer Rosteringen_UK
dc.subjectMetaheuristicen_UK
dc.titleVariable Neighbourhood Search: A Case Study for a Highly-Constrained Workforce Scheduling Problemen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/SSCI.2016.7850087en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailknr1@cs.stir.ac.uken_UK
dc.citation.btitle2016 IEEE Symposium Series on Computational Intelligence (SSCI)en_UK
dc.citation.conferencedates2016-12-06 - 2016-12-09en_UK
dc.citation.conferencelocationAthens, Greeceen_UK
dc.citation.conferencenameIEEE SSCI 2016: IEEE Symposium Series on Computational Intelligenceen_UK
dc.citation.date13/02/2017en_UK
dc.citation.isbn978-1-5090-4240-1en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationUniversity of Yorken_UK
dc.contributor.affiliationBT Group Plcen_UK
dc.contributor.affiliationBT Group Plcen_UK
dc.identifier.isiWOS:000400488301128en_UK
dc.identifier.scopusid2-s2.0-85016003561en_UK
dc.identifier.wtid545783en_UK
dc.contributor.orcid0000-0001-8654-2430en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dc.date.accepted2016-09-26en_UK
dcterms.dateAccepted2016-09-26en_UK
dc.date.filedepositdate2016-11-03en_UK
dc.relation.funderprojectDAASE: Dynamic Adaptive Automated Software Engineeringen_UK
dc.relation.funderrefEP/J017515/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorReid, Kenneth Neil|0000-0001-8654-2430en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorSwan, Jerry|en_UK
local.rioxx.authorMcCormick, Alistair|en_UK
local.rioxx.authorOwusu, Gilbert|en_UK
local.rioxx.projectEP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2016-12-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-12-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-12-31|en_UK
local.rioxx.filenameKenReidUniversityOfStirling.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-5090-4240-1en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
KenReidUniversityOfStirling.pdfFulltext - Accepted Version782.08 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.