Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24332
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKay, James Wen_UK
dc.contributor.authorPhillips, Williamen_UK
dc.date.accessioned2016-09-28T23:38:09Z-
dc.date.available2016-09-28T23:38:09Z-
dc.date.issued1997-05-15en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24332-
dc.description.abstractInformation about context can enable local processors to discover latent variables that are relevant to the context within which they occur, and it can also guide short-term processing. For example, Becker and Hinton (1992) have shown how context can guide learning, and Hummel and Biederman (1992) have shown how it can guide processing in a large neural net for object recognition. This article studies the basic capabilities of a local processor with two distinct classes of inputs: receptive field inputs that provide the primary drive and contextual inputs that modulate their effects. The contextual predictions are used to guide processing without confusing them with receptive field inputs. The processor's transfer function must therefore distinguish these two roles. Given these two classes of input, the information in the output can be decomposed into four disjoint components to provide a space of possible goals in which the unsupervised learning of Linsker (1988) and the internally supervised learning of Becker and Hinton (1992) are special cases. Learning rules are derived from an information-theoretic objective function, and simulations show that a local processor trained with these rules and using an appropriate activation function has the elementary properties required.en_UK
dc.language.isoenen_UK
dc.publisherMIT Pressen_UK
dc.relationKay JW & Phillips W (1997) Activation functions, computational goals, and learning rules for local processors with contextual guidance. Neural Computation, 9 (4), pp. 895-910. https://doi.org/10.1162/neco.1997.9.4.895en_UK
dc.rightsPublisher policy allows this work to be made available in this repository. Published in Neural Computation (1997) Vol. 9, No. 4, Pages 895-910. Copyright MIT Press: http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.4.895#.V-vEAIgrJpgen_UK
dc.titleActivation functions, computational goals, and learning rules for local processors with contextual guidanceen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1162/neco.1997.9.4.895en_UK
dc.citation.jtitleNeural Computationen_UK
dc.citation.issn1530-888Xen_UK
dc.citation.issn0899-7667en_UK
dc.citation.volume9en_UK
dc.citation.issue4en_UK
dc.citation.spage895en_UK
dc.citation.epage910en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailw.a.phillips@stir.ac.uken_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationPsychologyen_UK
dc.identifier.isiWOS:A1997WZ10000010en_UK
dc.identifier.scopusid2-s2.0-0003376201en_UK
dc.identifier.wtid668993en_UK
dc.contributor.orcid0000-0001-6036-2255en_UK
dcterms.dateAccepted1997-05-15en_UK
dc.date.filedepositdate2016-09-28en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorKay, James W|en_UK
local.rioxx.authorPhillips, William|0000-0001-6036-2255en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2016-09-28en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-09-28|en_UK
local.rioxx.filenameKayandPhillips-NeuralComputation-1997.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0899-7667en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
KayandPhillips-NeuralComputation-1997.pdfFulltext - Published Version253.24 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.