Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran, Ha-Nguyenen_UK
dc.contributor.authorCambria, Eriken_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2017-01-05T23:42:24Z-
dc.date.available2017-01-05T23:42:24Z-
dc.date.issued2016-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24116-
dc.description.abstractBackground/Introduction Common-sense reasoning is concerned with simulating cognitive human ability to make presumptions about the type and essence of ordinary situations encountered every day. The most popular way to represent common-sense knowledge is in the form of a semantic graph. Such type of knowledge, however, is known to be rather extensive: the more concepts added in the graph, the harder and slower it becomes to apply standard graph mining techniques.  Methods  In this work, we propose a new fast subgraph matching approach to overcome these issues. Subgraph matching is the task of finding all matches of a query graph in a large data graph, which is known to be a non-deterministic polynomial time-complete problem. Many algorithms have been previously proposed to solve this problem using central processing units. Here, we present a new graphics processing unit-friendly method for common-sense subgraph matching, termed GpSense, which is designed for scalable massively parallel architectures, to enable next-generation Big Data sentiment analysis and natural language processing applications.  Results and Conclusions We show that GpSense outperforms state-of-the-art algorithms and efficiently answers subgraph queries on large common-sense graphs.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationTran H, Cambria E & Hussain A (2016) Towards GPU-Based Common-Sense Reasoning: Using Fast Subgraph Matching. Cognitive Computation, 8 (6), pp. 1074-1086. https://doi.org/10.1007/s12559-016-9418-4en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Published by Springer in Cognitive Computation. The final publication is available at Springer via http://dx.doi.org/10.1007/s12559-016-9418-4en_UK
dc.subjectCommon-sense reasoningen_UK
dc.subjectSubgraph matchingen_UK
dc.subjectGPU computingen_UK
dc.subjectCUDAen_UK
dc.titleTowards GPU-Based Common-Sense Reasoning: Using Fast Subgraph Matchingen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2017-11-09en_UK
dc.rights.embargoreason[gpu-based-common-sense-reasoning.pdf] Publisher requires embargo of 12 monthsen_UK
dc.identifier.doi10.1007/s12559-016-9418-4en_UK
dc.citation.jtitleCognitive Computationen_UK
dc.citation.issn1866-9964en_UK
dc.citation.issn1866-9956en_UK
dc.citation.volume8en_UK
dc.citation.issue6en_UK
dc.citation.spage1074en_UK
dc.citation.epage1086en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date08/08/2016en_UK
dc.contributor.affiliationNanyang Technological Universityen_UK
dc.contributor.affiliationNanyang Technological Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000389304300006en_UK
dc.identifier.scopusid2-s2.0-84981164869en_UK
dc.identifier.wtid551283en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-06-02en_UK
dcterms.dateAccepted2016-06-02en_UK
dc.date.filedepositdate2016-08-29en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorTran, Ha-Nguyen|en_UK
local.rioxx.authorCambria, Erik|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2017-11-09en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-11-08en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2017-11-09|en_UK
local.rioxx.filenamegpu-based-common-sense-reasoning.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1866-9956en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
gpu-based-common-sense-reasoning.pdfFulltext - Accepted Version638.97 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.