Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24082
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSosa-Ascencio, Alejandroen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorTerashima-Marin, Hugoen_UK
dc.contributor.authorConant-Pablos, Santiago Enriqueen_UK
dc.date.accessioned2016-08-23T22:56:30Z-
dc.date.available2016-08-23T22:56:30Z-
dc.date.issued2016-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24082-
dc.description.abstractWe propose a grammar-based genetic programming framework that generates variable-selection heuristics for solving constraint satisfaction problems. This approach can be considered as a generation hyper-heuristic. A grammar to express heuristics is extracted from successful human-designed variable-selection heuristics. The search is performed on the derivation sequences of this grammar using a strongly typed genetic programming framework. The approach brings two innovations to grammar-based hyper-heuristics in this domain: the incorporation of if-then-else rules to the function set, and the implementation of overloaded functions capable of handling different input dimensionality. Moreover, the heuristic search space is explored using not only evolutionary search, but also two alternative simpler strategies, namely, iterated local search and parallel hill climbing. We tested our approach on synthetic and real-world instances. The newly generated heuristics have an improved performance when compared against human-designed heuristics. Our results suggest that the constrained search space imposed by the proposed grammar is the main factor in the generation of good heuristics. However, to generate more general heuristics, the composition of the training set and the search methodology played an important role. We found that increasing the variability of the training set improved the generality of the evolved heuristics, and the evolutionary search strategy produced slightly better results.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationSosa-Ascencio A, Ochoa G, Terashima-Marin H & Conant-Pablos SE (2016) Grammar-based generation of variable-selection heuristics for constraint satisfaction problems. Genetic Programming and Evolvable Machines, 17 (2), pp. 119--144. https://doi.org/10.1007/s10710-015-9249-1en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this work to be made available in this repository. Published in Genetic Programming and Evolvable Machines June 2016, Volume 17, Issue 2, pp 119–144. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-015-9249-1en_UK
dc.subjectConstraint satisfaction problemsen_UK
dc.subjectHyper-heuristicsen_UK
dc.subjectGenetic programmingen_UK
dc.subjectVariable ordering heuristicsen_UK
dc.subjectGrammar-based frameworken_UK
dc.titleGrammar-based generation of variable-selection heuristics for constraint satisfaction problemsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2017-05-16en_UK
dc.rights.embargoreason[GPEM_GrammarBasedHeuristicsSosaOchoa.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1007/s10710-015-9249-1en_UK
dc.citation.jtitleGenetic Programming and Evolvable Machinesen_UK
dc.citation.issn1573-7632en_UK
dc.citation.issn1389-2576en_UK
dc.citation.volume17en_UK
dc.citation.issue2en_UK
dc.citation.spage119en_UK
dc.citation.epage144en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailgoc@cs.stir.ac.uken_UK
dc.citation.date15/09/2015en_UK
dc.contributor.affiliationMonterrey Institute of Technology and Higher Education (Tecnológico de Monterrey)en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationMonterrey Institute of Technology and Higher Education (Tecnológico de Monterrey)en_UK
dc.contributor.affiliationMonterrey Institute of Technology and Higher Education (Tecnológico de Monterrey)en_UK
dc.identifier.isiWOS:000376876700002en_UK
dc.identifier.scopusid2-s2.0-84941711073en_UK
dc.identifier.wtid552161en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dcterms.dateAccepted2015-09-15en_UK
dc.date.filedepositdate2016-08-22en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSosa-Ascencio, Alejandro|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorTerashima-Marin, Hugo|en_UK
local.rioxx.authorConant-Pablos, Santiago Enrique|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-05-16en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-05-15en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2017-05-16|en_UK
local.rioxx.filenameGPEM_GrammarBasedHeuristicsSosaOchoa.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1389-2576en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
GPEM_GrammarBasedHeuristicsSosaOchoa.pdfFulltext - Accepted Version440.45 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.