Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/24082
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sosa-Ascencio, Alejandro | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.contributor.author | Terashima-Marin, Hugo | en_UK |
dc.contributor.author | Conant-Pablos, Santiago Enrique | en_UK |
dc.date.accessioned | 2016-08-23T22:56:30Z | - |
dc.date.available | 2016-08-23T22:56:30Z | - |
dc.date.issued | 2016-06 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/24082 | - |
dc.description.abstract | We propose a grammar-based genetic programming framework that generates variable-selection heuristics for solving constraint satisfaction problems. This approach can be considered as a generation hyper-heuristic. A grammar to express heuristics is extracted from successful human-designed variable-selection heuristics. The search is performed on the derivation sequences of this grammar using a strongly typed genetic programming framework. The approach brings two innovations to grammar-based hyper-heuristics in this domain: the incorporation of if-then-else rules to the function set, and the implementation of overloaded functions capable of handling different input dimensionality. Moreover, the heuristic search space is explored using not only evolutionary search, but also two alternative simpler strategies, namely, iterated local search and parallel hill climbing. We tested our approach on synthetic and real-world instances. The newly generated heuristics have an improved performance when compared against human-designed heuristics. Our results suggest that the constrained search space imposed by the proposed grammar is the main factor in the generation of good heuristics. However, to generate more general heuristics, the composition of the training set and the search methodology played an important role. We found that increasing the variability of the training set improved the generality of the evolved heuristics, and the evolutionary search strategy produced slightly better results. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Sosa-Ascencio A, Ochoa G, Terashima-Marin H & Conant-Pablos SE (2016) Grammar-based generation of variable-selection heuristics for constraint satisfaction problems. Genetic Programming and Evolvable Machines, 17 (2), pp. 119--144. https://doi.org/10.1007/s10710-015-9249-1 | en_UK |
dc.rights | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this work to be made available in this repository. Published in Genetic Programming and Evolvable Machines June 2016, Volume 17, Issue 2, pp 119–144. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-015-9249-1 | en_UK |
dc.subject | Constraint satisfaction problems | en_UK |
dc.subject | Hyper-heuristics | en_UK |
dc.subject | Genetic programming | en_UK |
dc.subject | Variable ordering heuristics | en_UK |
dc.subject | Grammar-based framework | en_UK |
dc.title | Grammar-based generation of variable-selection heuristics for constraint satisfaction problems | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2017-05-16 | en_UK |
dc.rights.embargoreason | [GPEM_GrammarBasedHeuristicsSosaOchoa.pdf] Publisher requires embargo of 12 months after formal publication. | en_UK |
dc.identifier.doi | 10.1007/s10710-015-9249-1 | en_UK |
dc.citation.jtitle | Genetic Programming and Evolvable Machines | en_UK |
dc.citation.issn | 1573-7632 | en_UK |
dc.citation.issn | 1389-2576 | en_UK |
dc.citation.volume | 17 | en_UK |
dc.citation.issue | 2 | en_UK |
dc.citation.spage | 119 | en_UK |
dc.citation.epage | 144 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.author.email | goc@cs.stir.ac.uk | en_UK |
dc.citation.date | 15/09/2015 | en_UK |
dc.contributor.affiliation | Monterrey Institute of Technology and Higher Education (Tecnológico de Monterrey) | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Monterrey Institute of Technology and Higher Education (Tecnológico de Monterrey) | en_UK |
dc.contributor.affiliation | Monterrey Institute of Technology and Higher Education (Tecnológico de Monterrey) | en_UK |
dc.identifier.isi | WOS:000376876700002 | en_UK |
dc.identifier.scopusid | 2-s2.0-84941711073 | en_UK |
dc.identifier.wtid | 552161 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dcterms.dateAccepted | 2015-09-15 | en_UK |
dc.date.filedepositdate | 2016-08-22 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Sosa-Ascencio, Alejandro| | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.author | Terashima-Marin, Hugo| | en_UK |
local.rioxx.author | Conant-Pablos, Santiago Enrique| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2017-05-16 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-05-15 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2017-05-16| | en_UK |
local.rioxx.filename | GPEM_GrammarBasedHeuristicsSosaOchoa.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1389-2576 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
GPEM_GrammarBasedHeuristicsSosaOchoa.pdf | Fulltext - Accepted Version | 440.45 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.