Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23956
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScardapane, Simoneen_UK
dc.contributor.authorPanella, Massimoen_UK
dc.contributor.authorComminiello, Daniloen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorUncini, Aurelioen_UK
dc.date.accessioned2017-05-24T23:59:36Z-
dc.date.available2017-05-24T23:59:36Z-
dc.date.issued2016-11en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23956-
dc.description.abstractIn a network of agents, a widespread problem is the need to estimate a common underlying function starting from locally distributed measurements. Real-world scenarios may not allow the presence of centralized fusion centers, requiring the development of distributed, message-passing implementations of the standard machine learning training algorithms. In this paper, we are concerned with the distributed training of a particular class of recurrent neural networks, namely echo state networks (ESNs). In the centralized case, ESNs have received considerable attention, due to the fact that they can be trained with standard linear regression routines. Based on this observation, in our previous work we have introduced a decentralized algorithm, framed in the distributed optimization field, in order to train an ESN. In this paper, we focus on an additional sparsity property of the output layer of ESNs, allowing for very efficient implementations of the resulting networks. In order to evaluate the proposed algorithm, we test it on two well-known prediction benchmarks, namely the Mackey-Glass chaotic time series and the 10th order nonlinear auto regressive moving average (NARMA) system.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationScardapane S, Panella M, Comminiello D, Hussain A & Uncini A (2016) Distributed Reservoir Computing with Sparse Readouts. IEEE Computational Intelligence Magazine, 11 (4), pp. 59-70. https://doi.org/10.1109/MCI.2016.2601759en_UK
dc.rights(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other worksen_UK
dc.subjectecho state networksen_UK
dc.subjectdistributed trainingen_UK
dc.subjectpredictionen_UK
dc.titleDistributed Reservoir Computing with Sparse Readoutsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/MCI.2016.2601759en_UK
dc.citation.jtitleIEEE Computational Intelligence Magazineen_UK
dc.citation.issn1556-6048en_UK
dc.citation.issn1556-603Xen_UK
dc.citation.volume11en_UK
dc.citation.issue4en_UK
dc.citation.spage59en_UK
dc.citation.epage70en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderThe Royal Society of Edinburghen_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date10/10/2016en_UK
dc.contributor.affiliationSapienza University of Romeen_UK
dc.contributor.affiliationSapienza University of Romeen_UK
dc.contributor.affiliationSapienza University of Romeen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationSapienza University of Romeen_UK
dc.identifier.isiWOS:000386226900006en_UK
dc.identifier.scopusid2-s2.0-84992151870en_UK
dc.identifier.wtid554177en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-06-05en_UK
dcterms.dateAccepted2016-06-05en_UK
dc.date.filedepositdate2016-08-08en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderprojectCognitive SenticNet and Multimodal Topic Structure Parsing Techniques for Both Chinese and English Languagesen_UK
dc.relation.funderrefEP/M026981/1en_UK
dc.relation.funderrefABEL/NNS/INTen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorScardapane, Simone|en_UK
local.rioxx.authorPanella, Massimo|en_UK
local.rioxx.authorComminiello, Danilo|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorUncini, Aurelio|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.projectABEL/NNS/INT|The Royal Society of Edinburgh|en_UK
local.rioxx.freetoreaddate2016-10-10en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-10-10en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-10-10|en_UK
local.rioxx.filenameIEEE-CIM-paper-accepted-Nov2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1556-603Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
IEEE-CIM-paper-accepted-Nov2016.pdfFulltext - Accepted Version303.76 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.