Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23782
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalik, Zeeshanen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorWu, Qingming Jonathanen_UK
dc.date.accessioned2017-03-24T22:54:21Z-
dc.date.available2017-03-24T22:54:21Z-
dc.date.issued2017-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23782-
dc.description.abstractIn this paper, we present a novel architecture and learning algorithm for a multilayered echo state machine (ML-ESM). Traditional echo state networks (ESNs) refer to a particular type of reservoir computing (RC) architecture. They constitute an effective approach to recurrent neural network (RNN) training, with the (RNN-based) reservoir generated randomly, and only the readout trained using a simple computationally efficient algorithm. ESNs have greatly facilitated the real-time application of RNN, and have been shown to outperform classical approaches in a number of benchmark tasks. In this paper, we introduce a novel criteria for integrating multiple layers of reservoirs within the ML-ESM. The addition of multiple layers of reservoirs are shown to provide a more robust alternative to conventional RC networks. We demonstrate the comparative merits of this approach in a number of applications, considering both benchmark datasets and real world applications.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationMalik Z, Hussain A & Wu QJ (2017) Multilayered Echo State Machine: A Novel Architecture and Algorithm. IEEE Transactions on Cybernetics, 47 (4), pp. 946-959. https://doi.org/10.1109/TCYB.2016.2533545en_UK
dc.rights(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.en_UK
dc.subjectLearningen_UK
dc.subjectmultiple layer network and time series neural networken_UK
dc.subjectneural networken_UK
dc.subjectBiological neural networksen_UK
dc.subjectCyberneticsen_UK
dc.subjectNeuronsen_UK
dc.subjectRecurrent neural networksen_UK
dc.subjectReservoirsen_UK
dc.subjectStandardsen_UK
dc.subjectTrainingen_UK
dc.titleMultilayered Echo State Machine: A Novel Architecture and Algorithmen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/TCYB.2016.2533545en_UK
dc.identifier.pmid27337730en_UK
dc.citation.jtitleIEEE Transactions on Cyberneticsen_UK
dc.citation.issn2168-2267en_UK
dc.citation.volume47en_UK
dc.citation.issue4en_UK
dc.citation.spage946en_UK
dc.citation.epage959en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date20/06/2016en_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Windsoren_UK
dc.identifier.isiWOS:000396396700011en_UK
dc.identifier.scopusid2-s2.0-84975849717en_UK
dc.identifier.wtid557313en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2016-02-08en_UK
dcterms.dateAccepted2016-02-08en_UK
dc.date.filedepositdate2016-07-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMalik, Zeeshan|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorWu, Qingming Jonathan|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2016-07-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-07-14|en_UK
local.rioxx.filenameIEEE_Trans_Cybernetics_revised(accepted)-2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2168-2267en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
IEEE_Trans_Cybernetics_revised(accepted)-2016.pdfFulltext - Accepted Version5.04 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.