Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/23782
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Malik, Zeeshan | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.contributor.author | Wu, Qingming Jonathan | en_UK |
dc.date.accessioned | 2017-03-24T22:54:21Z | - |
dc.date.available | 2017-03-24T22:54:21Z | - |
dc.date.issued | 2017-04 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/23782 | - |
dc.description.abstract | In this paper, we present a novel architecture and learning algorithm for a multilayered echo state machine (ML-ESM). Traditional echo state networks (ESNs) refer to a particular type of reservoir computing (RC) architecture. They constitute an effective approach to recurrent neural network (RNN) training, with the (RNN-based) reservoir generated randomly, and only the readout trained using a simple computationally efficient algorithm. ESNs have greatly facilitated the real-time application of RNN, and have been shown to outperform classical approaches in a number of benchmark tasks. In this paper, we introduce a novel criteria for integrating multiple layers of reservoirs within the ML-ESM. The addition of multiple layers of reservoirs are shown to provide a more robust alternative to conventional RC networks. We demonstrate the comparative merits of this approach in a number of applications, considering both benchmark datasets and real world applications. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | IEEE | en_UK |
dc.relation | Malik Z, Hussain A & Wu QJ (2017) Multilayered Echo State Machine: A Novel Architecture and Algorithm. IEEE Transactions on Cybernetics, 47 (4), pp. 946-959. https://doi.org/10.1109/TCYB.2016.2533545 | en_UK |
dc.rights | (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. | en_UK |
dc.subject | Learning | en_UK |
dc.subject | multiple layer network and time series neural network | en_UK |
dc.subject | neural network | en_UK |
dc.subject | Biological neural networks | en_UK |
dc.subject | Cybernetics | en_UK |
dc.subject | Neurons | en_UK |
dc.subject | Recurrent neural networks | en_UK |
dc.subject | Reservoirs | en_UK |
dc.subject | Standards | en_UK |
dc.subject | Training | en_UK |
dc.title | Multilayered Echo State Machine: A Novel Architecture and Algorithm | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1109/TCYB.2016.2533545 | en_UK |
dc.identifier.pmid | 27337730 | en_UK |
dc.citation.jtitle | IEEE Transactions on Cybernetics | en_UK |
dc.citation.issn | 2168-2267 | en_UK |
dc.citation.volume | 47 | en_UK |
dc.citation.issue | 4 | en_UK |
dc.citation.spage | 946 | en_UK |
dc.citation.epage | 959 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.author.email | ahu@cs.stir.ac.uk | en_UK |
dc.citation.date | 20/06/2016 | en_UK |
dc.contributor.affiliation | University of Stirling | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Windsor | en_UK |
dc.identifier.isi | WOS:000396396700011 | en_UK |
dc.identifier.scopusid | 2-s2.0-84975849717 | en_UK |
dc.identifier.wtid | 557313 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dc.date.accepted | 2016-02-08 | en_UK |
dcterms.dateAccepted | 2016-02-08 | en_UK |
dc.date.filedepositdate | 2016-07-14 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Malik, Zeeshan| | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.author | Wu, Qingming Jonathan| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2016-07-14 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2016-07-14| | en_UK |
local.rioxx.filename | IEEE_Trans_Cybernetics_revised(accepted)-2016.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 2168-2267 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
IEEE_Trans_Cybernetics_revised(accepted)-2016.pdf | Fulltext - Accepted Version | 5.04 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.