Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23762
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharafi, Siyamacken_UK
dc.contributor.authorFouladvand, Sajjaden_UK
dc.contributor.authorSimpson, Ianen_UK
dc.contributor.authorAlvarez, Juan Antonio Ben_UK
dc.date.accessioned2016-09-17T12:31:17Z-
dc.date.available2016-09-17T12:31:17Z-
dc.date.issued2016-08en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23762-
dc.description.abstractArchaeologists continue to search for techniques that enable them to analyze archaeological data efficiently with artificial intelligence approaches increasingly employed to create new knowledge from archaeological data. The purpose of this paper is to investigate the application of Pattern Recognition methods in detection of buried archaeological sites of the semi-arid Khorramabad Plain located in west Iran. This environment has provided suitable conditions for human habitation for over 40,000 years. However, environmental changes in the late Pleistocene and Holocene have caused erosion and sedimentation resulting in burial of some archaeological sites making archaeological landscape reconstructions more challenging. In this paper, the environmental variables that have influenced formation of archaeological sites of the Khorramabad Plain are identified through the application of Arc GIS. These variables are utilized to create an accurate predictive model based on the application of One-Class classification Pattern Recognition techniques. These techniques can be built using data from one class only, when the data from other classes are difficult to obtain, and are highly suitable in this context. The experimental results of this paper confirm one-class classifiers, including Auto-encoder Neural Network, k-means, principal component analysis data descriptor, minimum spanning tree data descriptor, k-nearest neighbour and Gaussian distribution as promising applications in creating an effective model for detecting buried archaeological sites. Among the investigated classifiers, minimum spanning tree data descriptor achieved the best performance on the Khorramabad Plain data set. © 2016 Elsevier Ltd.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationSharafi S, Fouladvand S, Simpson I & Alvarez JAB (2016) Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran. Journal of Archaeological Science: Reports, 8, pp. 206-215. https://doi.org/10.1016/j.jasrep.2016.06.024en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Sharafi S, Fouladvand S, Simpson I & Alvarez JAB (2016) Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran, Journal of Archaeological Science: Reports, 8, pp. 206-215. DOI: 10.1016/j.jasrep.2016.06.024 © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectArtificial intelligenceen_UK
dc.subjectEnvironmental variablesen_UK
dc.subjectKhorramabad Plainen_UK
dc.subjectOne-class classificationen_UK
dc.subjectPattern recognitionen_UK
dc.subjectPredictive modelingen_UK
dc.titleApplication of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iranen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2017-07-27en_UK
dc.rights.embargoreason[AI_archaeology_Khorramabad_English Revision.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.jasrep.2016.06.024en_UK
dc.citation.jtitleJournal of Archaeological Science: Reportsen_UK
dc.citation.issn2352-409Xen_UK
dc.citation.volume8en_UK
dc.citation.spage206en_UK
dc.citation.epage215en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaili.a.simpson@stir.ac.uken_UK
dc.citation.date26/07/2016en_UK
dc.contributor.affiliationAcademic Centre for Education, Culture and Researchen_UK
dc.contributor.affiliationAcademic Centre for Education, Culture and Researchen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversitat Autonoma de Barcelonaen_UK
dc.identifier.scopusid2-s2.0-84974678620en_UK
dc.identifier.wtid559632en_UK
dc.contributor.orcid0000-0003-2447-7877en_UK
dc.date.accepted2016-06-11en_UK
dcterms.dateAccepted2016-06-11en_UK
dc.date.filedepositdate2016-07-13en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSharafi, Siyamack|en_UK
local.rioxx.authorFouladvand, Sajjad|en_UK
local.rioxx.authorSimpson, Ian|0000-0003-2447-7877en_UK
local.rioxx.authorAlvarez, Juan Antonio B|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-07-27en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-07-26en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2017-07-27|en_UK
local.rioxx.filenameAI_archaeology_Khorramabad_English Revision.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2352-409Xen_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
AI_archaeology_Khorramabad_English Revision.pdfFulltext - Accepted Version1.34 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.