Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23745
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalik, Zeeshanen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorWu, Jonathanen_UK
dc.date.accessioned2018-01-29T23:45:17Z-
dc.date.available2018-01-29T23:45:17Z-
dc.date.issued2016-01-15en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23745-
dc.description.abstractThis paper presents a generalized incremental Laplacian Eigenmaps (GENILE), a novel online version of the Laplacian Eigenmaps, one of the most popular manifold-based dimensionality reduction techniques which solves the generalized eigenvalue problem. We evaluate the comparative performance of the manifold-based learning techniques using both artificial and real data. Specifically, two popular artificial datasets: swiss roll and s-curve datasets, are used, in addition to real MNIST digits, bank-note and heart disease datasets for testing and evaluating our novel method benchmarked against a number of standard batch-based and other manifold-based learning techniques. Preliminary experimental results demonstrate consistent improvements in the classification accuracy of the proposed method in comparison with other techniques.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationMalik Z, Hussain A & Wu J (2016) An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data. Neurocomputing, 173 (Part 2), pp. 127-136. https://doi.org/10.1016/j.neucom.2014.12.119en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Malik Z, Hussain A & Wu J (2016) An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data, Neurocomputing, 173 (Part 2), pp. 127-136. DOI: 10.1016/j.neucom.2014.12.119 © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectDimensionality reductionen_UK
dc.subjectGeneralized eigenvalue problemen_UK
dc.subjectLaplacian Eigenmapsen_UK
dc.subjectManifold-based learningen_UK
dc.titleAn online generalized eigenvalue version of Laplacian Eigenmaps for visual big dataen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2017-01-04en_UK
dc.rights.embargoreason[elsevier-article-accepted-2015.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.neucom.2014.12.119en_UK
dc.citation.jtitleNeurocomputingen_UK
dc.citation.issn0925-2312en_UK
dc.citation.volume173en_UK
dc.citation.issuePart 2en_UK
dc.citation.spage127en_UK
dc.citation.epage136en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderDigital Health Instituteen_UK
dc.author.emailahu@cs.stir.ac.uken_UK
dc.citation.date03/09/2015en_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Windsoren_UK
dc.identifier.isiWOS:000366879700002en_UK
dc.identifier.scopusid2-s2.0-84948693249en_UK
dc.identifier.wtid557222en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2014-12-12en_UK
dcterms.dateAccepted2014-12-12en_UK
dc.date.filedepositdate2016-07-12en_UK
dc.relation.funderprojectA disruptive patient centric preventive diabetes (Type 2) app PD2Aen_UK
dc.relation.funderrefPD2Aen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMalik, Zeeshan|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorWu, Jonathan|en_UK
local.rioxx.projectPD2A|Digital Health Institute|en_UK
local.rioxx.freetoreaddate2017-01-04en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-01-03en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2017-01-04|en_UK
local.rioxx.filenameelsevier-article-accepted-2015.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0925-2312en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
elsevier-article-accepted-2015.pdfFulltext - Accepted Version702.48 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.