Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/23745
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Malik, Zeeshan | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.contributor.author | Wu, Jonathan | en_UK |
dc.date.accessioned | 2018-01-29T23:45:17Z | - |
dc.date.available | 2018-01-29T23:45:17Z | - |
dc.date.issued | 2016-01-15 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/23745 | - |
dc.description.abstract | This paper presents a generalized incremental Laplacian Eigenmaps (GENILE), a novel online version of the Laplacian Eigenmaps, one of the most popular manifold-based dimensionality reduction techniques which solves the generalized eigenvalue problem. We evaluate the comparative performance of the manifold-based learning techniques using both artificial and real data. Specifically, two popular artificial datasets: swiss roll and s-curve datasets, are used, in addition to real MNIST digits, bank-note and heart disease datasets for testing and evaluating our novel method benchmarked against a number of standard batch-based and other manifold-based learning techniques. Preliminary experimental results demonstrate consistent improvements in the classification accuracy of the proposed method in comparison with other techniques. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier | en_UK |
dc.relation | Malik Z, Hussain A & Wu J (2016) An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data. Neurocomputing, 173 (Part 2), pp. 127-136. https://doi.org/10.1016/j.neucom.2014.12.119 | en_UK |
dc.rights | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Malik Z, Hussain A & Wu J (2016) An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data, Neurocomputing, 173 (Part 2), pp. 127-136. DOI: 10.1016/j.neucom.2014.12.119 © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_UK |
dc.subject | Dimensionality reduction | en_UK |
dc.subject | Generalized eigenvalue problem | en_UK |
dc.subject | Laplacian Eigenmaps | en_UK |
dc.subject | Manifold-based learning | en_UK |
dc.title | An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2017-01-04 | en_UK |
dc.rights.embargoreason | [elsevier-article-accepted-2015.pdf] Publisher requires embargo of 12 months after formal publication. | en_UK |
dc.identifier.doi | 10.1016/j.neucom.2014.12.119 | en_UK |
dc.citation.jtitle | Neurocomputing | en_UK |
dc.citation.issn | 0925-2312 | en_UK |
dc.citation.volume | 173 | en_UK |
dc.citation.issue | Part 2 | en_UK |
dc.citation.spage | 127 | en_UK |
dc.citation.epage | 136 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Digital Health Institute | en_UK |
dc.author.email | ahu@cs.stir.ac.uk | en_UK |
dc.citation.date | 03/09/2015 | en_UK |
dc.contributor.affiliation | University of Stirling | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Windsor | en_UK |
dc.identifier.isi | WOS:000366879700002 | en_UK |
dc.identifier.scopusid | 2-s2.0-84948693249 | en_UK |
dc.identifier.wtid | 557222 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dc.date.accepted | 2014-12-12 | en_UK |
dcterms.dateAccepted | 2014-12-12 | en_UK |
dc.date.filedepositdate | 2016-07-12 | en_UK |
dc.relation.funderproject | A disruptive patient centric preventive diabetes (Type 2) app PD2A | en_UK |
dc.relation.funderref | PD2A | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Malik, Zeeshan| | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.author | Wu, Jonathan| | en_UK |
local.rioxx.project | PD2A|Digital Health Institute| | en_UK |
local.rioxx.freetoreaddate | 2017-01-04 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-01-03 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by-nc-nd/4.0/|2017-01-04| | en_UK |
local.rioxx.filename | elsevier-article-accepted-2015.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0925-2312 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
elsevier-article-accepted-2015.pdf | Fulltext - Accepted Version | 702.48 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.